Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке



Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке

Владельцы патента RU 2752863:

Акционерное общество "Концерн "Созвездие" (RU)

Изобретение относится к области радиотехники и может быть использовано в системах радиомониторинга, в том числе радиолокации, для повышения эффективности отождествления радиосигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке. Технический результат – повышение вероятности правильного отождествления сигналов к одному и тому же ИРИ, точности определения результирующих параметров сигналов и координат ИРИ. В заявленном способе проводят определение с заданной вероятностью размеров многомерного строба отождествления на основе учета как дисперсий измеряемых параметров – координат состояния обнаруженных и сопровождаемых ИРИ, так и корреляции между измеряемыми параметрами с последующим определением результирующих параметров радиосигналов и координат ИРИ в масштабе времени, близком к реальному. 2 ил.

 

Изобретение относится к области радиотехники и может быть использовано в системах радиомониторинга, в том числе радиолокации, для повышения эффективности отождествления радиосигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке.

Повышение вероятности правильного отождествления сигналов к одному и тому же ИРИ, точности определения результирующих параметров сигналов и координат ИРИ обеспечивается за счет определения с заданной вероятностью размеров многомерного строба отождествления на основе учета как дисперсий измеряемых параметров – координат состояния обнаруженных и сопровождаемых ИРИ, так и корреляции между измеряемыми параметрами, с последующим определением результирующих параметров радиосигналов и координат ИРИ в масштабе времени, близком к реальному.

Известен способ отождествления пеленгов источников радиоизлучений по их радиотехническим характеристикам [Кваснов А.В. Способ отождествления источников радиоизлучений по их радиотехническим характеристикам двухпозиционными пассивными радиоэлектронными средствами. Патент РФ №2656370, G01S 3/72], заключающийся в том, что для принятого сигнала от ИРИ создается формуляр цели, где записывается информация о величине радиотехнического параметра и пеленге, на котором обнаружен объект. После этого производится совместная обработка формуляров цели, полученных на разных позициях пассивными радиоэлектронными средствами. Отождествление пеленгов ИРИ производится путем сличения формуляров, принятых от двух разнесенных радиоэлектронных средств по их радиотехническим характеристикам. Для этого используются две выборки одного из радиотехнических параметров, полученных за время наблюдения объекта первой и второй пассивными станциями. Отождествление осуществляется на основании t-критерия Стьюдента, позволяющего проверять равенства средних значений в двух выборках. В результате устанавливается факт принадлежности одного источника радиоизлучения двум наблюдающим станциям, либо утверждается, что наблюдаются две различные станции. Процедура повторяется для всех пар обнаруженных ИРИ первым и вторым радиоэлектронным средством.

Данный способ предполагает наличие многократных измерений радиотехнических параметров сигналов ИРИ и вычислений средних, и дисперсий их измерений по выборке конечного объема. Однако во многих практических ситуациях в системах радиомониторинга имеется необходимость в отождествлении во времени результатов однократных измерений нескольких параметров, что не может быть реализовано с помощью указанного способа. С уменьшением измеренных параметров показатели достоверности отождествления ухудшаются, кроме того, способ предполагает неизменность во времени истинных значений измеряемых параметров в течение всей серии измерений, что также является ограничением применимости способа.

Наиболее близким по технической сущности к предлагаемому является способ стробового отождествления сигналов с источниками радиоизлучений [В.С. Верба, А.В. Васильев, В.Б. Гребенников, А.А. Косогор, Е.Л. Логвиненко, В.И. Меркулов, А.Г. Тетеруков. Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке. Патент РФ №2557784, G01S 5/06], принятый за прототип.

Способ-прототип включает следующие операции.

1. Формирование вектора оценок n координат состояния обнаруженных и сопровождаемых ИРИ на текущий k-й момент времени,

.

Оценки координат состояния всех обнаруженных ИРИ являются известными и получены на k-й момент времени по результатам предыдущих измерений.

2. Для каждого j-го ИРИ формируют вектор приращения координат состояния ИРИ, равный разности текущего измеренного в k-й момент времени вектора координат состояния и вектора текущей оценки координат состояния j-го ИРИ:

.

Сигналы ИРИ поступают на станцию радиотехнической разведки (СРТР) в общем случае не одновременно, а результаты измерений определяются моделью:

k – номер дискрета времени,

– центрированные некоррелированные гауссовские шумы с известной дисперсией в k-й момент времени.

За время, равное , координаты (1) состояния ИРИ изменяются по закону

3. Определение размеров строба, гарантирующих требуемую достоверность отождествления пеленгов. Размер строба j-ого ИРИ по i-й измеренной фазовой координате должен удовлетворять условию

(2)

где – дисперсия шумов измерений ;

– дискрет времени.

– дисперсия скорости изменения i-го параметра j-го ИРИ,

, (3)

и обеспечивает выполнение условия (2) с заранее заданной вероятностью .

4. Принятие решения об отождествлении сигнала с j-м ИРИ при условии выполнения неравенства во всем n координатам:

. (4)

Если условие (4) не выполняется хотя бы по одной из n координат, то проверяется выполнение этого условия для следующего экземпляра сопровождаемого ИРИ в соответствии с выражением:

. (5)

Если условие (4) не выполняется, то проверяется выполнение этого условия для следующего экземпляра сопровождаемого ИРИ.

Результат отождествления представляется в виде вектора:

,

– индекс ИРИ, с которым отождествлен измеренный вектор параметров .

Если условие не выполняется ни для одного из обнаруженных (сопровождаемых) ИРИ, то принимается решение об обнаружении нового ИРИ, т.е. j*=N+1.

Недостатки способа-прототипа заключаются в следующем.

Отождествление выполняется по стробам векторов признаков, включающих координаты ИРИ. При этом компоненты вектора считаются не коррелированы, а отождествление основано на независимой проверке выполнения неравенства (4) для каждой компоненты вектора признаков. Однако, в общем случае среди измеряемых параметров сигнала и координат ИРИ имеются взаимно коррелированные параметры.

В частности, коррелированными измеряемыми параметрами ИРИ являются X-и Y-компоненты координат местоположения ИРИ. Корреляция между данными параметрами обусловлена реализованным способом определения координат ИРИ. В случае триангуляционного способа матрица корреляции X-и Y-компонент координат ИРИ является недиагональной матрицей, а ее элементы зависят как от параметров взаимного расположения ИРИ и пунктов пеленгования, так и от дисперсий ошибок пеленгования в каждом из пунктов. В случае разностно-дальномерного способа элементы матрицы корреляции X-и Y-компонент координат ИРИ зависят как от параметров взаимного расположения ИРИ и пунктов синхронного приема радиосигналов, так и от дисперсий ошибок измерения разностей времен прихода сигналов между пунктами. Из-за корреляции между измеряемыми параметрами размеры строба отождествления должны определяться исходя из матрицы корреляции параметров по критерию обеспечения требуемой вероятности правильного отождествления. В прототипе используется строб отождествления вида многомерного гиперпрямоугольника (фигуры, обобщающей понятие «прямоугольник», на случай многомерного пространства), при котором область отождествления по X-и Y-компонентам координат ИРИ является прямоугольной. Однако, наличие корреляции между этими компонентами обуславливает эллиптичность данной области, параметры ориентации которой определяются параметрами взаимного расположения ИРИ и пунктов измерения параметров положения ИРИ (пеленгов на ИРИ, задержек времени прихода радиосигнала), а величины полуосей определяются требуемой вероятностью отождествления по данным параметрам, исходя из дисперсий измерения параметров положения.

Представление строба в виде гиперпрямоугольника ввиду игнорирования тем самым наличия корреляционных связей между измеряемыми параметрами в общем случае приводит к ошибкам в определении формы и размера строба. Возможны ситуации, когда при использовании согласно прототипу гиперпрямоугольного строба, отождествления результата измерения с ИРИ не произойдет, однако при использовании строба более корректной формы с соответствующей коррекцией правила отождествления результаты измерений будут отождествлены с ИРИ. Указанные недостатки определяют снижение вероятности правильного отождествления результатов измерений с ИРИ, и в целом, приводят к снижению показателей эффективности радиомониторинга в многоцелевой обстановке.

Задачей, на решение которой направлено предлагаемый способ, является повышение эффективности стробового отождествления сигналов с источниками радиоизлучения в системах радиомониторинга.

Для решения поставленной задачи в способе стробового отождествления сигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке, включающий формирование по результатам предыдущих измерений вектора оценок n координат состояния обнаруженных и сопровождаемых ИРИ на текущий k-й момент времени, формирование для каждого j-го ИРИ вектора приращения координат состояния ИРИ, принятие решения об отождествлении сигнала с j-м ИРИ при условии выполнения неравенства, в противном случае – проверку выполнение этого условия для следующего экземпляра сопровождаемого ИРИ, в случае не выполнения условия ни для одного из ИРИ – принятие решения об обнаружении нового ИРИ, представление результата отождествления в виде вектора, отличающийся тем, что формируют величину по формуле

,

где и – матрицы корреляции вектора ошибок измерения параметров и их производной скорости измерения параметров j-го ИРИ соответственно, и принимают решение об отождествлении сигнала с j-м ИРИ при условии выполнения неравенства,

,

гарантирующего требуемую достоверность отождествления и соответствующего нахождению вектора приращения координат состояния ИРИ в пределах строба вида многомерного эллипсоида, учитывающего корректным образом наличие корреляции между измеряемыми параметрами, где определяется исходя из заданной вероятности правильного отождествления по формуле

,

n – количество измеряемых параметров, – гамма-функция, – неполная гамма функция.

Повышение вероятности правильного отождествления сигналов к одному и тому же ИРИ, точности определения результирующих параметров сигналов и координат ИРИ обеспечивается за счет определения с заданной вероятностью размеров многомерного строба отождествления на основе учета как дисперсий измеряемых параметров – координат состояния обнаруженных и сопровождаемых ИРИ, так и корреляции между измеряемыми параметрами, с последующим определением результирующих параметров радиосигналов и координат ИРИ в масштабе времени, близком к реальному.

Предлагаемый способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке включает следующие операции.

Предполагается, что оценки координат состояния всех обнаруженных ИРИ

,

являются известными и получены на k-й момент времени по результатам предыдущих измерений для каждого j-го ИРИ, , N – количество ИРИ.

Вектор истинных значений измеряемых параметров в k-й момент времени зависит от истинных значений вектора в (k-1)-й момент времени, вектора скорости изменения истинных значений параметров

(6)

и интервала времени между измерениями :

. (7)

Приращение вектора оценки координат:

или

, (8)

где и – вектор шума измерения вектора параметров и его производной соответственно.

В большинстве практических ситуаций адекватным является гауссовская модель ошибок измерений, в рамках которой векторы шумов измерений являются центрированными, ,, с матрицами корреляции , ; – оператор усреднения по вероятности, – оператор транспонирования.

Тогда для разности векторов справедливы равенства

,

,.

Шумы измерений в различные моменты времени можно считать статистически независимыми, что для гауссовских величин означает их некоррелированность, т.е. =0. Следовательно, матрица корреляции приращения измерений (9) для j-го ИРИ вычисляется по формуле

. (9)

Здесь, как и в прототипе, отметим, что численные значения матрицы могут определяться по правилу:

,

вытекающему из соотношения (6) при вычислении производной методом конечных разностей:

.

Для неподвижных и малоподвижных ИРИ (изменение координат которых за интервал времени между последовательными измерениями обуславливает изменение истинных значений измеряемых параметров на порядок меньше погрешности их измерения) матрицу можно полагать равной нулю и не учитывать в правой части (9).

Вектор приращения координат состояния j-го ИРИ удовлетворяет неравенству

,

или

, (10)

где определяется исходя из заданной вероятности правильного отождествления по формуле

, (11)

n – количество измеряемых параметров, – гамма-функция, – неполная гамма функция. [Справочник по специальным функциям с формулами, графиками и математическими таблицами. Под ред. Абрамовица М., Стиган И.М. М.: Наука, 1979. 832 с.]

Размеры строба для j-го ИРИ, гарантирующие требуемую достоверность отождествления (по критерию вероятности данного события), определяются исходя из равенства

(12)

Решение об отождествлении сигнала с j-м ИРИ принимается при условии выполнения неравенства (10).

Если условие (10) не выполняется, то проверяется выполнение этого условия для следующего экземпляра сопровождаемого ИРИ.

С целью уменьшения вычислительных затрат, в частном случае, когда из n измеряемых параметров коррелированными являются только первые m,m<n, размеры строба для коррелированных параметров можно определять по формуле (12); для некоррелированных параметров – по формуле (2). В этом случае принимается решение об отождествлении сигнала с ИРИ, если для всех коррелированных параметров с порядковыми номерами выполняется неравенство (10), и для каждого параметра с порядковым номером выполняется неравенство

, (13)

где – дисперсия ошибок измерения i-го параметра для j-го ИРИ, – дисперсия ошибок измерения скорости изменения i-го параметра для j-го ИРИ, , – определяется исходя из заданной вероятности правильного отождествления по формуле .

Результат отождествления представляется в виде вектора:

,

– индекс ИРИ, с которым отождествлен измеренный вектор параметров .

Таким образом, способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке осуществляется следующим образом:

1. Формируется вектор оценок n координат состояния обнаруженных и сопровождаемых ИРИ на текущий k-й момент времени,

.

Оценки координат состояния всех обнаруженных ИРИ являются известными и получены на k-й момент времени по результатам предыдущих измерений.

2. Для каждого j-го ИРИ формируют вектор приращения координат состояния ИРИ, равный разности текущего измеренного в k-й момент времени вектора координат состояния и вектора текущей оценки координат состояния j-го ИРИ:

.

3. Формируют величину

, (14)

где и – матрицы корреляции вектора ошибок измерения параметров и их производной (скорости измерения параметров) j-го ИРИ соответственно, и – вектор ошибок измерения параметров и их производной для j-го ИРИ соответственно.

4. Принимают решение об отождествлении сигнала с j-м ИРИ при условии выполнения неравенства (10):

,

гарантирующего требуемую достоверность отождествления и соответствующего нахождению вектора приращения координат состояния ИРИ в пределах строба вида многомерного эллипсоида, учитывающего корректным образом наличие корреляции между измеряемыми параметрами, где определяется исходя из заданной вероятности правильного отождествления по формуле

, (15)

n– количество измеряемых параметров, – гамма-функция, – неполная гамма функция.

Если условие (10) не выполняется, то проверяется выполнение этого условия для следующего экземпляра обнаруженных (сопровождаемых) ИРИ в соответствии с выражением:

. (16)

Результат отождествления представляется в виде вектора:

,

– индекс ИРИ, с которым отождествлен измеренный вектор параметров .

Если условие (10) не выполняется ни для одного из обнаруженных (сопровождаемых) ИРИ, то принимается решение об обнаружении нового ИРИ, т.е. j*=N+1.

Предлагаемый способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке лишен перечисленных выше недостатков способа-прототипа. Заявляемый способ основан на учете корреляции между измеряемыми параметрами при определении формы и размеров строба. Наличие корреляции между измеряемыми параметрами обуславливает эллиптичность соответствующей этим параметрами области строба. В частности, в случае отождествления координат ИРИ, измеренных триангуляционным либо разностно-дальномерным способом, параметры ориентации эллиптической области строба определяются параметрами взаимного расположения ИРИ и пунктов измерения параметров положения ИРИ (пеленгов на ИРИ либо задержек времени прихода радиосигнала), а величины полуосей определяются требуемой вероятностью отождествления по данным параметрам исходя из дисперсий измерения параметров положения.

Предлагаемый способ справедлив для случая многомерного вектора измеряемых параметров с произвольной матрицей корреляции. В случае, если часть измеряемых параметров являются некоррелированными, с целью снижения вычислительных затрат возможна раздельная проверка попадания измеренных значений некоррелированных параметров между границами строба (вдоль осей параметров многомерного пространства) одновременно с совместной проверкой попадания значений остальных коррелированных параметров, представленных в виде вектора, внутрь области многомерного эллипсоида. Решение об отождествлении принимается лишь в том случае, когда все некоррелированные параметры находятся внутри границ строба вдоль осей данных параметров, и когда вектор коррелированных параметров находится внутри соответствующего многомерного эллипсоида.

Представление строба в виде многомерного эллипсоида, в отличие от вида гиперпрямоугольника, позволяет корректным образом учитывать наличие корреляции между измеряемыми параметрами, определяет в сравнении с прототипом в случае коррелированных измеренных параметров повышение вероятности правильного отождествления результатов измерений с ИРИ, и приводит к повышению показателей эффективности радиомониторинга в целом в многоцелевой обстановке.

Предлагаемый способ обеспечивает стробовое отождествление сигналов с источниками радиоизлучения в многоцелевой обстановке в общем случае наличия корреляции между измеряемыми параметрами, необходимость чего реализуется, в частности, в большинстве практических ситуаций при измерениях координат ИРИ триангуляционным, разностно-дальномерным и комбинированными способами.

В качестве примера рассмотрим случай стробового отождествления результатов определения координат неподвижного ИРИ триангуляционным способом. В этом случае вектор измеряемых параметров содержит две компоненты – X- и Y- компоненты оценок координат местоположения ИРИ. Строб, определяемый неравенством (10) является эллипсом. Точки границы строба удовлетворяют уравнению:

,

где матрица корреляции совпадает с матрицей корреляции оценок координат ИРИ триангуляционным способом,

,

– матрица производных измеренных пеленгов по координатам x и y ИРИ с элементами ,;

– порядковый номер расположения пеленгационных пунктов;

. – координаты расположения пеленгационных пунктов;

– диагональная матрица корреляции оценок пеленгов на j-й ИРИ;

, – среднеквадратические ошибки измерения пеленгов,

– дальность от пеленгационных пунктов до j-го ИРИ.

Укрупненная блок-схема одного из возможных вариантов устройства для реализации предлагаемого способа представлена на фиг. 1, где обозначено:

1 – n-канальный измеритель параметров принимаемых сигналов (И);

2 – устройство сравнения (УС);

3 – бортовая вычислительная система (БВС).

Устройство содержит последовательно соединенные n-канальный измеритель параметров принимаемых сигналов 1, бортовую вычислительную систему 2 и устройство сравнения 3. Вход n-канального измерителя параметров принимаемых сигналов 1 является входом устройства. Второй вход БВС 2 является входом для сигнала текущей оценки координат состояния j-го ИРИ, третий вход БВС 2 – для данных от навигационной системы; четвертый вход БВС 2 подсоединен к выходу устройства сравнения 3, который является выходом всего устройства.

Устройство для реализации заявляемого способа работает следующим образом.

Принимаемые сигналы поступают на измеритель И 1, формирующий в каждый k-й момент времени вектор состояния . По вектору и вектору текущей оценки координат состояния j-го ИРИ (полученному от системы формирования координат состояния, на фиг.1 не показана) с учетом информации от навигационной системы о местоположении системы радиомониторинга и скорости ее движения в БВС 2 вычисляются , и, в соответствии с формулой (14), величина , которая с выхода БВС 2 поступает на вход УС 3. В УС 3 в соответствии с неравенством (10) выполняется сравнение с константой .

По результатам сравнения в случае выполнения неравенства (10) принимается решение о принадлежности принятых сигналов j*-му ИРИ, либо об обнаружении нового ИРИ с порядковым номером j=N+1. Если условие (10) не выполняется, то проверяется выполнение этого условия для следующего обнаруженного (сопровождаемого) ИРИ.

Если условие (10) не выполняется ни для одного из обнаруженных (сопровождаемых) ИРИ, то принимается решение об обнаружении нового ИРИ, т.е. j*=N+1.

Реализация описанного выше способа позволяет повысить достоверность отождествления сигналов в многоцелевой обстановке и тем самым обеспечивает качественное определение местоположения обнаруживаемых ИРИ и их надежное сопровождение.

Сравнение показателей эффективности предлагаемого способа стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке и способа-прототипа.

Моделирование предлагаемого способа проведено в программе Matchad. В качестве примера на фиг. 2 изображен прямоугольный строб отождествления, соответствующий способу-прототипу, и эллиптический строб, соответствующий предлагаемому способу. ИРИ находился в точке (0, 0) [км], пункты пеленгования – в точках (-5, -25) [км] и (5, -5) [км]. Заданная вероятность отождествления принималась равной 0,95. Предполагалось, что корреляционная матрица ошибок измерения азимутов является диагональной, , со среднеквадратической ошибкой измерения азимута равной 2 градуса. Матрицакорреляции оценок координат ИРИ триангуляционным способом для выбранного взаимного расположения ИРИ и пунктов пеленгования равна [км].

Сплошным серым цветом выделена область «А» строба прототипа, при попадании в которую результатов измерений координат ИРИ, согласно способу-прототипу, принимаются «ложные» решения об отождествлении. Данные решения являются «ложными», так как из-за наличия корреляции между измерениями они не обеспечивают заданную вероятность отождествления, ограниченную эллипсом.

Штрихами выделена область «Б» строба предлагаемого способа, выходящая за пределы строба прототипа, при попадании в которую результатов измерений координат ИРИ, согласно способу-прототипу решения об отождествлении не принимаются. Однако данная область содержится внутри строба предлагаемого способа и исключение попадающих в нее результатов является ошибочным, что приводит к ложному исключению измерений координат ИРИ.

При использовании предлагаемого способа в обоих рассматриваемых случаях «ложные» решения об отождествлении исключаются, что подтверждает повышение эффективности отождествления предлагаемым способом относительно прототипа.

Следует отметить, что эллиптичная форма строба характерна так же для случая однопунктного определения координат наземного ИРИ с летно-подъемного средства при одновременном совместном пеленговании по азимуту и углу места.

Это определяет целесообразность использования предлагаемого способа отождествления при определении координат указанным способом.

Достигаемый технический результат – повышение вероятности правильного отождествления сигналов к одному и тому же ИРИ, точности определения результирующих параметров сигналов и координат ИРИ.

Способ стробового отождествления сигналов с источниками радиоизлучения (ИРИ) в многоцелевой обстановке, включающий формирование по результатам предыдущих измерений вектора оценок n координат состояния обнаруженных и сопровождаемых ИРИ на текущий k-й момент времени, формирование для каждого j-го ИРИ вектора приращения координат состояния ИРИ, проверку условия отождествления вектора состояния с j-м ИРИ, принятие решения об отождествлении при выполнении условия, в противном случае – проверку выполнения условия отождествления для следующего экземпляра сопровождаемого ИРИ, в случае не выполнения условия ни для одного из ИРИ – принятие решения об обнаружении нового ИРИ, представление результата отождествления в виде вектора, отличающийся тем, что формируют величину по формуле

,

где – вектор приращения координат состояния j-го ИРИ в k-й момент времени;

– матрица корреляции вектора ошибок измерения параметров j-го ИРИ;

– матрица корреляции производной параметров j-го ИРИ;

– дискрет времени;

– оператор транспонирования;

– оператор обратной матрицы;

и принимают решение об отождествлении сигнала с j-м ИРИ при выполнении условия

,

соответствующего нахождению вектора приращения координат состояния ИРИ в пределах строба вида многомерного эллипсоида, учитывающего наличие корреляции между измеряемыми параметрами, где определяется в соответствии с формулой

,

где n – количество измеряемых параметров;

– гамма-функция;

– неполная гамма-функция.



 

Похожие патенты:

Заявленная группа изобретений относится к области радиолокации и может быть использована для защиты от несинхронных импульсных помех (НИП), с целью улучшения характеристик обнаружения полезного эхосигнала. Техническим результатом изобретения является обеспечение возможности картографирования НИП в пространственных расширенных кластерах по дальности, азимуту и углу места работы как при синхронном, так и асинхронном обзоре РЛС и классификации НИП при индифферентности к скорости и способу радиолокационного обзора при межобзорном картографировании НИП.

Настоящее изобретение относится к области радиолокации и может быть использовано для мониторинга водной поверхности акваторий с целью обнаружения нефтяных пленок. Задачей изобретения является разработка способа обнаружения нефтяных пленок на водной поверхности радиолокатором, обеспечивающего большую производительность поиска нефтепродуктов по сравнению с известными способами.

Изобретение относится к радиолокации, в частности к способам комплексирования бортовой радиолокационной станции (РЛС) пилотируемого летательного аппарата (ЛА) и бортовых радиолокационных станций беспилотных летательных аппаратов (БЛА) при определении времени задержки на срабатывание полезной нагрузки беспилотных летательных аппаратов, и может быть использовано для эффективного использования полезной нагрузки беспилотных летательных аппаратов.

Изобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов и может быть использовано в областях, где требуется обеспечение максимального отношения сигнал/шум. Способ приема оптических сигналов с помощью лавинного фотодиода включает пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют значения умножаемого и неумножаемого шумовых токов фотодиода и шум-фактор лавинного умножения, после чего коэффициент лавинного умножения Μ фотодиода устанавливают так, чтобы его величина с учетом допуска на регулировку была близка к оптимальному значению где Ι02 и Jм2 - соответственно квадраты составляющих неумножаемого и умножаемого шумовых токов фотодиода в безлавинном режиме, приведенные к его выходу; α - коэффициент шум-фактора, определяемый структурой фотодиода, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах f1<f<f2, где f1 и f2 - нижняя и верхняя границы допуска на частоту f, а величину f=Ν/Τ определяют путем подсчета количества N выходных импульсов за предварительно заданное время Т.

Изобретение относится к устройствам для контроля и измерения электрических параметров авиационного радиооборудования. Технический результат заключается в расширении функциональных возможностей, снижении эксплуатационных затрат, повышении точности и надежности измерений.

Изобретение относится к области радиолокационной техники и может быть использовано при полунатурном моделировании распространения радиоволн в каналах воздух-поверхность, поверхность-воздух, поверхность-поверхность и воздух-воздух с учетом многократных переотражений от поверхности, естественных и искусственных объектов путем обеспечения имитации в реальном времени радиосигнала, отраженного от пространственно-распределенной радиофизической сцены, в качестве которой выступают фрагменты земной поверхности с различной степенью шероховатости (рельеф, водные поверхности, растительные покровы, искусственные объекты и т.д.) и поверхности искусственных объектов с различными электромагнитными свойствами (металл, стекло, пластик, радиопоглощающие материалы, метаматериалы и т.д.).

Изобретение относится к радионавигационным системам по определению местоположения или получения информации, относящейся к местоположению, для целей навигации посредством свойств распространения радиоволн и свойств поверхностей (линий) положения. Технический результат заключается в создании мобильной радионавигационной многопозиционной разностно-дальномерной системы, способной дублировать сигналы глобальных навигационных систем при их потере на ограниченных участках земной поверхности.

Изобретение относится к области радиолокации и может быть использовано в импульсных радиолокационных станциях различных типов (обзорных, многофункциональных и др.), оснащенных выносными пассивными модулями, для решения задачи селекции целей на фоне многократных ответно-импульсных помех, воздействующих по главному лепестку диаграммы направленности антенной решетки.

Изобретение относится к радиотехнике и может использоваться для защиты оптико-электронных средств от мощных оптических излучений. Технический результат состоит в повышении качества защиты оптико-электронных средств.

Изобретение относится к области радиотехнических систем и может быть использовано для пассивного определения пространственных параметров запросчика авиационных телекоммуникационных систем на основе приема и обработки сигналов ответов на его запросы одного приемоответчика. Техническим результатом является определение пространственных параметров запросчика телекоммуникационных систем, которое основано на приеме ответов на его запросы только одного приемоответчика.

Настоящее изобретение относится к области радиолокации и может быть использовано для мониторинга водной поверхности акваторий с целью обнаружения нефтяных пленок. Задачей изобретения является разработка способа обнаружения нефтяных пленок на водной поверхности радиолокатором, обеспечивающего большую производительность поиска нефтепродуктов по сравнению с известными способами.
Наверх