Способ определения поинтервальной скорости и расхода жидкости в скважине

Изобретение относится к области исследования скважин с работающими интервалами притока или поглощения и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений. Способ определения поинтервальной скорости и расхода жидкости в скважине включает серию измерений скважинным прибором при его движении вдоль ствола скважины с различными постоянными скоростями, построение на основании этих измерений графика зависимости показаний скважинного прибора от скорости его движения. Создают гидродинамическое сопротивление потоку посредством пакера скважинного прибора, обеспечивающего частичное перекрытие внутреннего сечения ствола скважины, замеряют величину перепада давления на пакере с помощью датчиков давления скважинного прибора. Причем измерение перепада давления на пакере осуществляют как при движении скважинного прибора по направлению потока, так и против потока, с учетом функциональной зависимости перепада давления на пакере от скорости движения прибора ΔP=fi(Vпр) определяют локальную скорость потока жидкости между интервалами притока/поглощения при условии, когда ΔP=fi(Vпр)=0, где ΔΡ - перепад давления на пакере прибора, Vпр - скорость движения прибора, i=1…n - участок исследуемого интервала притока/поглощения жидкости. Технический результат заключается в упрощении технологического процесса исследования скважин, повышении диапазона расходов и расширении номенклатуры исследуемых промысловых скважин, имеющих несколько интервалов притока/поглощения жидкости. 3 ил.

 

Изобретение относится к области исследования вертикальных, горизонтальных и наклонных скважин, в частности к способам определения поинтервального и суммарного расхода жидкости (вода + нефть) в скважинах с несколькими работающими интервалами притока и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений, определении профиля притока в условиях многопластовых систем и контроле технического состояния скважины.

Известен способ определения скорости потока жидкости в скважине, включающий движение скважинного прибора вдоль ствола остановленной скважины с различными постоянными скоростями, регистрацию показаний скважинного прибора и скорости его движения, на основании которых строится градуировочная характеристика скважинного прибора, где скорость потока жидкости определяется с учетом градуировочной характеристики и зарегистрированной в работающей скважине расходограммы. В качестве скважинного прибора используется механический расходомер с турбинкой (Абрукин А.Л. Потокометрия скважин. М., «Недра», 1978, с. 180-184).

Недостатком данного способа являются:

- необходимость в остановке работы скважины, что в целом усложняет технологический процесс;

- необходимость в обязательной градуировке расходомера, что также усложняет технологический процесс;

- погрешность в определении скорости потока из-за изменения скорости вращения турбинки расходомера вследствие механического загрязнения датчика расхода;

- погрешность в определении скорости потока из-за влияния на скорость вращения турбинки расходомера гравитационного расслоения потока жидкости при проведении работ в горизонтальных и наклонных скважинах;

- погрешность в определении скорости потока из-за влияния на скорость вращения турбинки расходомера угла наклона скважины при проведении работ в наклонных скважинах.

Наиболее близким по технической сущности к заявляемому изобретению является способ определения скорости потока жидкости в скважине с малыми расходами, включающий серию измерений скважинным прибором при его движении вдоль ствола скважины по направлению потока с различными постоянными скоростями, затем проведение измерения в точке в остановленной скважине и построение на основании этих измерений аппроксимирующего графика зависимости показаний скважинного прибора от скорости его движения в работающей скважине до пересечения с графиком зависимости показания скважинного прибора в остановленной скважине, где по точке пересечения этих зависимостей определяют скорость потока жидкости в скважине. В качестве скважинного прибора используется термодебитомер (RU 2441153, Е21В 47/10, G01P 5/10). Недостатком данного способа являются:

- необходимость в остановке работы скважины, что в целом усложняет технологический процесс;

- погрешность в определении скорости потока из-за инерционности теплообмена между датчиком термодебитомера и жидкостью;

- погрешность в определении скорости потока из-за влияния состава скважинной жидкости на условия теплообмена между датчиком термодебитомера и жидкостью;

- погрешность в определении скорости потока из-за влияния на показания датчика термодебитомера гравитационного расслоения потока жидкости при проведении работ в горизонтальных и наклонных скважинах;

- погрешность в определении скорости потока, связанная с экстраполяцией графика зависимости показаний скважинного прибора от скорости его движения.

Задача, на решение которой направлено заявляемое техническое решение, состоит в упрощении технологического процесса исследования скважин, повышении диапазона расходов и расширении номенклатуры исследуемых промысловых скважин, имеющих несколько интервалов притока/поглощения жидкости.

Данная задача достигается за счет того, что в предлагаемом способе определения поинтервальной скорости и расхода жидкости в скважине, включающем серию измерений скважинным прибором при его движении вдоль ствола скважины с различными постоянными скоростями в диапазоне от минимально возможной до максимально возможной для данного геофизического подъемника, построение на основании этих измерений графика зависимости показаний скважинного прибора от скорости его движения, создают искусственное гидродинамическое сопротивление потоку посредством пакера скважинного прибора, обеспечивающего частичное перекрытие внутреннего сечения ствола скважины, замеряют величину перепада давления на пакере с помощью датчиков давления скважинного прибора, причем измерение перепада давления на пакере осуществляют как при движении скважинного прибора по направлению потока, так и против потока, с учетом функциональной зависимости перепада давления на пакере от скорости движения прибора ΔP=fi(Vпр) определяют локальную скорость потока жидкости между интервалами притока/поглощения при условии, когда ΔP=fi(Vпр)=0, где ΔP - перепад давления на пакере прибора, Vпр - скорость движения прибора, i=1...n - участок исследуемого интервала притока/поглощения жидкости.

Техническим результатом заявляемого изобретения является снижение эксплуатационных затрат, расширение рабочего диапазона по расходу и повышение точности определения поинтервального распределения скорости потока, поинтервального и суммарного расхода жидкости. Изобретение поясняется рисунками, где:

- на фиг. 1 представлена общая схема способа определения скорости потока жидкости, где 1 - скважинный прибор, 2 - пакер прибора, 3 - скважина, Vпот - скорость потока жидкости, Vпр - скорость движения прибора;

- на фиг. 2 представлена в графическом виде схема проведения измерений в стволе скважины, имеющей рабочие интервалы притока;

- на фиг. 3 представлен в графическом виде алгоритм расчета скорости потока.

Способ определения скорости потока скважинной жидкости (вода + нефть) осуществляется следующим образом. Скважинный прибор 1 с помощью геофизического подъемника известными способами доставляют в исследуемую область скважины 3, имеющую работающие интервалы H1 - Н2, Н2 - Н3 и Н3 - Н4 с притоками/поглощениями Q2, Q3 и Q4, раскрывают пакер 2 прибора, искусственно создавая тем самым гидродинамическое сопротивление потоку жидкости. Пакер 2 при этом частично, а не полностью перекрывает внутреннее сечение ствола скважины 3 и не препятствует движению прибора вдоль ствола скважины. Сужение проточной части ствола скважины 3 пакером 2 инициирует появление перепада давления ΔP на пакере, которое измеряется с помощью датчиков давления, размещенных в корпусе скважинного прибора 1 (на фиг. 1 датчики давления не показаны).

Далее с помощью геофизического подъемника осуществляют движение (протяжку) скважинного прибора 1 вдоль ствола скважины по направлению потока с некоторой постоянной скоростью+V1 (знак плюс указывает на движение по направлению потока), захватывая при этом работающие интервалы H1 - Н2, Н2 - Н3 и Н3 - Н4 с притоками/поглощениями Q2, Q3 и Q4 и одновременно измеряя и регистрируя перепад давления ΔP на пакере. После завершения прохода рабочих интервалов притока/поглощения осуществляют реверс в протяжке скважинного прибора. Теперь уже движение прибора происходит против направления потока с той же постоянной скоростью - V1 (знак минус указывает на движение против направления потока), захватывая при этом те же работающие интервалы H1 - Н2, Н2 - Н3 и Н3 - Н4 с притоками/поглощениями Q2, Q3 и Q4 и одновременно измеряя и регистрируя перепад давления ΔP на пакере.

После завершения цикла измерения и регистрации перепада давления ΔP на пакере при движении прибора с постоянной скоростью V1 по направлению потока и против потока осуществляют протяжку прибора с другими постоянными скоростями V2, V3, V4, и V5. Практика показывает, что достаточно выбрать не более пяти значений скоростей движения скважинного прибора Vпр в диапазоне от минимально возможной до максимально возможной при использовании данного геофизического подъемника.

На фиг. 2 представлена в графическом виде схема проведения измерений при движении прибора с различными постоянными скоростями V1, V2, V3, V4 и V5 по направлению потока и против потока (для краткости против потока представлены только скорости V1, V2, где по оси ординат отложены показания скважинного прибора (перепад давления ΔP на пакере), а по оси абсцисс протяженность H исследуемой области скважины с указанием рабочих интервалов H1 - Н2, Н2 - Н3 и Н3 - Н4 с притоками/поглощениями Q2, Q3 и Q4.

На основании данных измерений строят график зависимости показаний скважинного прибора (перепад давления ΔP на пакере) от скорости движения прибора ΔP=f(Vпр) между работающими интервалами на глубинах H1, Н2, Н3, Н4, а скорость потока жидкости определяют из полученной зависимости, при которой перепад давления на пакере равен нулю (см. фиг. 3). Равенство нулю перепада давления ΔP на пакере будет означать, что скорость движения прибора Vпр совпадает со скоростью потока Vпот (Vпр=Vпот). В свою очередь скорость движения скважинного прибора контролируется и измеряется известными способами и устройствами наземной геофизической станции.

Поинтервальный и суммарный расход жидкости рассчитывается с учетом внутреннего диаметра ствола скважины и измеренной скорости прибора из выражения где S - внутреннее сечение ствола скважины, - скорость движения прибора при перепаде давления на пакере равном нулю.

Предложенный способ определения скорости потока жидкости позволяет существенно снизить эксплуатационные затраты на проведение исследования скважин, поскольку исключает из технологического процесса такие присущие известным способам операции, как остановка скважины, градуировка скважинного прибора и использование для градуировки прибора гидродинамической модели скважины. Кроме этого, предложенный способ позволяет повысить точность определения скорости потока, поскольку, во-первых, используемый принцип, основанный на измерении перепада давления на месте искусственно созданного гидродинамического сопротивления лишен недостатков, присущих известным способам, использующих механические расходомеры с турбинкой и термодебитомеры.

Способ определения поинтервальной скорости и расхода жидкости в скважине, включающий серию измерений скважинным прибором при его движении вдоль ствола скважины с различными постоянными скоростями, построение на основании этих измерений графика зависимости показаний скважинного прибора от скорости его движения, отличающийся тем, что создают искусственно гидродинамическое сопротивление потоку посредством пакера скважинного прибора, обеспечивающего частичное перекрытие внутреннего сечения ствола скважины, замеряют величину перепада давления на пакере с помощью датчиков давления скважинного прибора, причем измерение перепада давления на пакере осуществляют как при движении скважинного прибора по направлению потока, так и против потока, с учетом функциональной зависимости перепада давления на пакере от скорости движения прибора ΔP=fi(Vпр) определяют локальную скорость потока жидкости между интервалами притока/поглощения при условии, когда ΔP=fi(Vпр)=0, где ΔΡ - перепад давления на пакере прибора, Vпр - скорость движения прибора, i=1…n - участок исследуемого интервала притока/поглощения жидкости.



 

Похожие патенты:

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам определения давления насыщения нефти газом в скважинных условиях. Способ включает измерение давления жидкости и газового фактора, определение сопоставлением этих показателей давления насыщения добываемой продукции газом.

Изобретение относится к способу и системе проверки трубопровода для транспортировки флюида. Способ проверки трубопровода для транспортировки флюида, включающий: генерирование импульса давления с профилем давления в трубопроводе путем закрывания задвижки, соединенной с трубопроводом; регистрацию профиля давления с помощью датчика, соединенного с трубопроводом; вычисление первой производной и второй производной указанного профиля давления; идентификацию момента начала закрывания задвижки, момента окончания закрывания задвижки и начального момента закрывания задвижки, в который задвижка закрыта достаточно для генерирования акустического импульса, на основании первой производной и второй производной профиля давления; и определение параметра трубопровода, характеризующего трубопровод, с помощью указанных момента начала закрывания задвижки, момента окончания закрывания задвижки и начального момента закрывания задвижки.

Способ измерения расхода газожидкостного потока относится к области измерения расхода многокомпонентных газожидкостных потоков и может быть использован в нефтяной промышленности. Техническим результатом является обеспечение упрощенного измерения расхода многокомпонентного газожидкостного потока при использовании единого простого теплового параметра идентификации измеряемого компонента газожидкостного потока.

Группа изобретений относится к области обнаружения аномалий потока в системе подачи и циркуляции бурового раствора. Способ идентификации аномального потока бурового раствора включает определение рабочей скорости насоса бурового раствора, выход которого соединен с трубной колонной в стволе скважины, перемещение возвращаемого из ствола скважины бурового раствора, вытесненного насосом бурового раствора через трубную колонну, в доливочный резервуар, перемещение возвращенного бурового раствора из доливочного резервуара в резервуар для хранения бурового раствора с использованием первого перекачивающего насоса, скорость потока которого непосредственно связана с измеримой рабочей скоростью первого перекачивающего насоса, измерение первого параметра, связанного с объемом бурового раствора в доливочном резервуаре, перемещение бурового раствора из резервуара для хранения бурового раствора в дозировочный резервуар с использованием второго перекачивающего насоса, причем скорость потока второго перекачивающего насоса непосредственно связана с измеримой рабочей скоростью второго перекачивающего насоса, и дозировочный резервуар сообщается по текучей среде со входом насоса бурового раствора, измерение второго параметра, связанного с объемом бурового раствора в дозировочном резервуаре, и идентификацию аномального потока бурового раствора путем обнаружения изменений в измеренной рабочей скорости первого перекачивающего насоса, при этом рабочую скорость первого перекачивающего насоса регулируют так, чтобы поддерживать первый параметр по существу постоянным.

Изобретение относится к нефтяной и газовой промышленности и может применяться при геофизических исследованиях скважин. Устройство с множеством датчиков с различными параметрами является стационарной системой по контролю за эксплуатацией пластов в наклонно-направленных и в горизонтальных стволах скважин (месторождений) для долговременного мониторинга пласта по профилю приток.

Изобретение относится к области исследования вертикальных, горизонтальных и наклонных скважин, в частности к способам определения скорости потока и суммарного расхода жидкости в скважинах, и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений, контроле технического состояния скважины, а также для контроля суммарного расхода жидкости в магистральных трубопроводах.

Изобретение относится к области разработки нефтяных месторождений, более подробно - к лабораторным методам определения свойств добываемой нефти, обеспечивающего возможность нахождения зависимостей состава нефти от возраста залегающих пород, и при анализе свойств добываемой нефти из скважины с выполненным гидравлическим разрывом пласта (далее - ГРП), установлению посторонних примесей, не свойственных данному пласту и определению доли этих примесей.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для измерения дебита жидкой и газообразной фаз пластового флюида, добываемого из нефтяных скважин. Техническим результатом является повышение качества замера дебита жидкой и газообразной фаз пластового флюида.

Изобретение относится к измерительной технике, а именно к устройствам, применяемым для измерения содержания капельной жидкости в потоке попутного нефтяного газа. Система измерения содержит линию измерения газа в виде трубопровода, в котором последовательно, по направлению движения газа, установлены запорная арматура с ручным приводом в виде кранов шаровых, объемный преобразователь расхода в виде ультразвукового объемного расходомера газа, датчик температуры, датчик давления, массовый преобразователь расхода в виде кориолисового массового расходомера газа, клапан запорно-регулирующий в виде регулятора расхода, автоматизированную систему управления, состоящую из шкафа электрооборудования и шкафа управления с контроллером в комплекте с дисплеем.

Изобретение относится к нефтегазодобывающей отрасли промышленности, к устройствам для сепарации сырой нефти на нефтяную и газовую фракции и может быть использовано в различных установках оперативного учета дебитов продукции нефтяных скважин, в том числе для продукции нефтяных скважин с повышенным газосодержанием.

Группа изобретений относится к добыче многофазных и/или многокомпонентных флюидов из нефтегазовых скважин и предназначено для измерения расходов фаз и/или компонент добываемых флюидов. Технический результат, достигаемый при реализации предлагаемого изобретения, заключается в обеспечении возможности использования результатов измерений расходов, полученных одним или несколькими измерительными устройствами, для создания и обновления предиктивных моделей, а также для оптимизации работы всей системы посредством составления расписания обучения и мониторинга необходимости технического обслуживания оборудования. Распределенная система измерения расходов многофазных и/или многокомпонентных флюидов, добываемых из нефтегазовых скважин, содержит размещенные по меньшей мере на двух скважинах измерительные устройства, вычислительные модули и единое устройство обработки данных, предназначенное для сбора и обработки результатов измерений со всех измерительных устройств и обеспечивающее создание, обновление и распределение предиктивных моделей измерительным устройствам, а также оптимизацию работы всей системы. При этом каждое из измерительных устройств установлено на линии потока добываемого из скважины флюида и представляет собой набор датчиков, чувствительных к по меньшей мере одному физическому параметру потока, добываемого из скважины многофазного и/или многокомпонентного флюида. Каждый из вычислительных модулей установлен на линии потока добываемого флюида, соединен с установленным на этой линии измерительным устройством по меньшей мере для сбора, обработки и передачи результатов измерений. В соответствии со способом измерения осуществляют непрерывные измерения параметров потока добываемого флюида посредством измерительных устройств. Для каждой скважины определяют значения расходов фаз и/или компонент добываемого флюида посредством предиктивных моделей, построенных на основе зависимостей, предварительно установленных между параметрами потока добываемого флюида и значениями расходов фаз и/или компонент добываемого флюида. Результаты измерений всех измерительных устройств и определения расходов фаз и/или компонент добываемого флюида передают на единое устройство обработки данных, и посредством единого устройства обработки данных осуществляют хранение и обработку всех переданных результатов. 2 н. и 12 з.п. ф-лы, 2 ил.
Наверх