Неразрушающий способ выявления зон концентрации напряжений в изделиях из металлов и сплавов

Изобретение относится к области дефектоскопии методом вихревых токов. Техническим результатом является повышение производительности способа диагностики изделий. В заявленном способе, основанном на подаче в исследуемое изделие электромагнитного поля различных частот тока возбуждения ƒ с регистрацией сигнала-отклика на каждой из частот ƒ и вычислении распределения составляющих сигнала-отклика по толщине изделия, на его бездефектной зоне определяют значения напряжения U0, индуцируемого полем вихревых токов при различных частотах тока возбуждения ƒ, далее в контролируемой области изделия непрерывно регистрируют напряжения U, индуцируемые полем вихревых токов при различных частотах тока возбуждения ƒ и получают зависимости амплитуды вносимого напряжения |Uвн|=|U-U0| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения, на основе которых делают вывод об отсутствии или наличии зон концентрации напряжений в исследуемой области изделия. 5 ил.

 

Изобретение относится к области контрольно-измерительной техники и может быть использовано в диагностике изделий из металлов и сплавов по параметрам поля вихревых токов для выявления зон концентрации внутренних механических напряжений в изделиях и конструкциях.

Известен способ вихретокового контроля напряженно-деформированного состояния конструкционных материалов (Сахабудинов Р.В., Чукарин А.В. Применение метода вихревых токов для контроля напряженно-деформированного состояния элементов конструкций машиностроения при диагностике // «Известия ЮФУ. Технические науки». 2008. №2(79). С: 25-30, УДК: 621.376.3), согласно которому по эмпирической зависимости механического напряжения σ от напряжения вихретокового измерителя U контролируется напряженно-деформированное состояние конструкций. Для применения способа необходимо на исследуемом материале провести серию предварительных испытаний образцов на сжатие, состоящих в измерении параметра U при разных уровнях приложенной нагрузки и определении зависимости уровня механических напряжений σ от напряжения вихретокового измерителя U:

где А, K - эмпирические коэффициенты, рассчитанные по результатам предварительных испытаний. С использованием полученных зависимостей можно определять механические напряжения, возникающие в материале конструкции.

Недостатками данного технического решения являются низкие производительность и информативность результатов измерения из-за необходимости проведения серии предварительных механических испытаний на сжатие и возможности осуществления только интегральной оценки напряженно-деформированного состояния металла в контролируемом объеме изделия.

Наиболее близким по технической сущности к предлагаемому изобретению является неразрушающий способ определения механических напряжений в поверхностном слое изделий из металлов и сплавов (патент РФ RU №2327124, публ. 20.06.2008, МПК G01L 1/20), основанный на явлении скин-эффекта и послойном исследовании электрофизических свойств деформированного металла. Способ основан на возбуждении в контролируемом изделии электропотенциальным методом переменного тока различной частоты и измерении сигнала-отклика, по которому регистрируют распределение эффективного удельного сопротивления проводника в зависимости от глубины проникновения электромагнитного поля на заданных частотах. Полученное распределение сопоставляют с заранее известными значениями механических напряжений на глубинах, соответствующих заданным частотам, и на основании полученной калибровочной зависимости между эффективным удельным сопротивлением и механическими напряжениями выявляют распределение механических напряжений по глубине контролируемого изделия.

Недостатками данного технического решения являются низкая производительность и ограниченная область применения способа из-за необходимости контактных измерений, а также проведения предварительных разрушающих испытаний для определения механических напряжений на различной глубине контролируемого изделия.

Технической задачей предлагаемого изобретения является возможность выявления зон концентрации напряжений бесконтактным способом неразрушающего контроля без проведения предварительных разрушающих испытаний.

Технический результат заключается в повышении производительности и расширении области применения способа.

Это достигается тем, что в известном неразрушающем способе выявления зон концентрации напряжений в изделиях из металлов и сплавов, основанном на подаче в исследуемое изделие электромагнитного поля различных частот тока возбуждения ƒ с регистрацией сигнала-отклика на каждой из частот ƒ и вычислении распределения составляющих сигнала-отклика по толщине изделия, на его бездефектной зоне определяют значения напряжения U0, индуцируемого полем вихревых токов при различных частотах тока возбуждения ƒ далее в контролируемой области изделия непрерывно регистрируют напряжения U, индуцируемые полем вихревых токов при различных частотах тока возбуждения ƒ, и получают зависимости амплитуды вносимого напряжения |Uвн|=|U-U0| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения ƒ, и при равенстве нулю амплитуды вносимого напряжения |Uвн| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUm/Δƒ| во всем диапазоне частот тока возбуждения ƒ делают вывод об отсутствии зон концентрации напряжений в исследуемой области изделия, а при выраженном увеличении амплитуды вносимого напряжения |Uвн| и появлении локального максимума зависимости отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| на частоте ƒt делают вывод о наличии в исследуемой области зоны концентрации напряжений.

Сущность предлагаемого изобретения поясняется чертежами, где на фиг. 1 представлена зависимость амплитуды вносимого напряжения |Uвн| от частоты тока возбуждения ƒ для изделия с зоной концентрации напряжений, на фиг. 2 показана зависимость отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения ƒ для изделия с зоной концентрации напряжений, на фиг. 3 изображена схема вихретокового контроля зоны концентрации напряжений, полученной от вдавливания шара, на фиг. 4 представлена зависимость амплитуды вносимого напряжения |Uвн| от частоты тока возбуждения ƒ, полученная при вихретоковом контроле зоны концентрации напряжений, полученной от вдавливания шара, на фиг. 5 изображена зависимость отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения ƒ при вихретоковом контроле зоны концентрации напряжений, полученной от вдавливания шара.

Осуществление предлагаемого неразрушающего способа выявления зон концентрации напряжений в изделиях из металлов и сплавов осуществляется следующим образом.

Вихретоковым преобразователем с многочастотным возбуждением, подключенным в вихретоковому дефектоскопу, подают электромагнитное поле с различными частотами тока возбуждения ƒ в исследуемое изделие с регистрацией сигнала-отклика на каждой из частот тока возбуждения ƒ и определяют значение напряжения U0, индуцируемое полем вихревых токов от бездефектной зоны изделия при различных частотах тока возбуждения ƒ. Диапазон частот выбирают исходя из необходимой глубины проникновения вихревых токов, соизмеримой с толщиной исследуемого объекта [Неразрушающий контроль: Справочник в 7 т. Под общ. ред. В.В. Клюева. Т. 2. кн. 1. М.: Машиностроение, 2003].

Далее вихретоковый преобразователь перемещают в контролируемую область изделия и регистрируют напряжения U, индуцируемые полем вихревых токов при различных частотах тока возбуждения ƒ. Затем проводят расчет значений амплитуд вносимого напряжения |Uвн| при различных частотах тока возбуждения ƒ, по которым производят построение зависимостей амплитуды вносимого напряжения |Uвн|=|U-U0| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения ƒ.

Известно, что в процессе деформирования металлов и сплавов отмечается изменение межатомных расстояний кристаллической решетки, приводящее к изменению концентрации и подвижности электрических зарядов, что оказывает влияние на значение электрической проводимости материала. При появлении в материале локальной зоны концентрации напряжений изменяются электромеханические свойства материала контролируемого изделия в этой зоне. При этом зона концентрации напряжений характеризуется градиентом деформационных полей и соответствующим градиентом электрической проводимости металла. В связи с наличием такой неоднородности электромеханических свойств материала, эффективным является получение распределения электрической проводимости по всей толщине изделия, которое позволяет оценить значения градиентов электропроводности и коррелирующих с ними значений градиентов деформаций, тем самым выявляя локализованные зоны концентрации напряжений в контролируемом изделии.

Экспериментально установлено, что в недеформированном металле, характеризующемся малым уровнем внутренних напряжений во всем объеме объекта контроля, значение удельной электрической проводимости является постоянной величиной, в связи с чем значение вносимого напряжения |Uвн| не будет зависеть от частоты тока возбуждения ƒ, а значение отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| будет равно нулю. Также установлено, что при наличии в объекте контроля зоны концентрации напряжений значения электрической проводимости, вносимого напряжения |Uвн| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| будут изменяться в зависимости от глубины проникновения вихревых токов, при этом максимальное значение отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| будет соответствовать такой частоте ƒt, на которой глубина проникновения вихревых токов достигает области с максимальным градиентом механических напряжений.

Таким образом, согласно предлагаемому способу, при равенстве нулю амплитуды вносимого напряжения |Uвн| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| во всем диапазоне частот тока возбуждения ƒ делают вывод об отсутствии зоны концентрации напряжений, а при выраженном увеличении амплитуды вносимого напряжения |Uвн| и появлении локального максимума зависимости отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| на частоте ƒt делают вывод о наличии в исследуемой области зоны концентрации напряжений.

Реализация предлагаемого способа показана на примере выявления зоны концентрации напряжений под отпечатком от внедрения стального шара диаметром 15 мм на глубину 3 мм в поверхность алюминиевой пластины толщиной 15 мм (фиг. 3). Схема вихретокового контроля зоны концентрации напряжений, полученной от вдавливания шара, содержит обмотку возбуждения вихретокового преобразователя 1, измерительную обмотку вихретокового преобразователя 2, а также отпечаток от вдавливания шара 3 с прилегающей к нему зоной концентрации напряжений (зона интенсивной пластической деформации) 4 и остальной недеформированный материал 5.

Установка вихретокового преобразователя осуществлялась с противоположной относительно отпечатка стороны алюминиевой пластины. Многочастотное возбуждение электромагнитного поля проводилось в диапазоне частот от 50 до 3000 Гц. В результате проведенных испытаний зарегистрированы зависимости амплитуды вносимого напряжения |Uвн| (фиг. 4) и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| (фиг. 5) от частоты тока возбуждения ƒ, и было выявлено выраженное увеличение амплитуды вносимого напряжения |Uвн| и появление локального максимума зависимости отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| в зоне концентрации напряжений, сформировавшихся в процессе упругопластического деформирования металла вдавливанием шара. На недеформированных участках алюминиевой пластины значения амплитуды вносимого напряжения |Uвн| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| были близки к нулю на всех исследованных частотах тока возбуждения ƒ.

Предлагаемый бесконтактный способ выявления зон концентрации напряжений позволяет проводить контроль изделий и конструкций с различным состоянием поверхности, при этом имеется возможность проведения контроля при отсутствии двустороннего доступа к изделию. Также данный способ может быть реализован в лабораторных и промышленных условиях для контроля металла действующего оборудования, в том числе для мониторинга кинетики накопления внутренних повреждений в наиболее нагруженных элементах технических устройств.

Использование предлагаемого изобретения позволяет повысить производительность способа контроля уровня внутренних напряжений в изделиях из металлов и сплавов и расширить область его применения, поскольку предлагаемый способ с высокой точностью выявляет наличие локальных зон концентрации напряжений бесконтактным способом по всей толщине контролируемого изделия без проведения предварительных испытаний разрушающими методами.

Неразрушающий способ выявления зон концентрации напряжений в изделиях из металлов и сплавов, основанный на подаче в исследуемое изделие электромагнитного поля различных частот тока возбуждения ƒ с регистрацией сигнала-отклика на каждой из частот ƒ и вычислении распределения составляющих сигнала-отклика по толщине изделия, отличающийся тем, что на его бездефектной зоне определяют значения напряжения U0, индуцируемого полем вихревых токов при различных частотах тока возбуждения ƒ, далее в контролируемой области изделия непрерывно регистрируют напряжения U, индуцируемые полем вихревых токов при различных частотах тока возбуждения ƒ, и получают зависимости амплитуды вносимого напряжения |Uвн|=|U-U0| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| от частоты тока возбуждения ƒ, и при равенстве нулю амплитуды вносимого напряжения |Uвн| и отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| во всем диапазоне частот тока возбуждения ƒ делают вывод об отсутствии зон концентрации напряжений в исследуемой области изделия, а при выраженном увеличении амплитуды вносимого напряжения |Uвн| и появлении локального максимума зависимости отношения приращения амплитуды вносимого напряжения к приращению частоты |ΔUвн/Δƒ| на частоте ƒt делают вывод о наличии в исследуемой области зоны концентрации напряжений.



 

Похожие патенты:

Изобретение может быть использовано для измерения перемещений и вибрации электропроводящих объектов, обнаружения поверхностных дефектов, измерения толщины диэлектрических покрытий на электропроводном основании. Способ вихретокового измерения физико-механических параметров заключается в том, что вихретоковый преобразователь, выполненный в виде радиочастотного контура, размещают в зоне контроля, формируют в упомянутом контуре высокочастотные колебания, переменное напряжение которых преобразуют в пропорциональный измеряемому параметру сигнал постоянного тока, при этом высокочастотные колебания синусоидальной формы в радиочастотном контуре формируют, подавая с внешнего генератора через высокоомный импеданс на радиочастотный контур вихретокового преобразователя высокочастотные колебания произвольной формы с высокостабильными амплитудой и частотой, полученные с контура высокочастотные колебания усиливают, детектируют, пропускают через фильтр низких частот, по величине полученного постоянного напряжения определяют степень активных потерь в материале и судят об изменениях физико-механических параметров контролируемого объекта.

Использование: для измерения физико-механических параметров электропроводящих объектов. Сущность изобретения заключается в том, что вихретоковый преобразователь содержит высокочастотный генератор, вихретоковый датчик, преобразователь переменного напряжения контура и усилитель-формирователь уровней, источник высокостабильного постоянного напряжения, высокоомный импеданс, аналого-цифровой преобразователь, арифметическое логическое устройство с функцией линеаризации сигнала и цифроаналоговый преобразователь, источник высокостабильного постоянного напряжения подключен к высокочастотному генератору, выполненному в виде автономного кварцевого генератора высокостабильных по частоте и амплитуде прямоугольных импульсов, выход высокочастотного генератора соединен с первым выводом высокоомного импеданса, второй вывод высокоомного импеданса соединен с вихретоковым датчиком, формирующим гармонические колебания и с входом преобразователя переменного напряжения контура в пропорциональный измеряемому параметру сигнал постоянного тока, состоящим из усилителя-ограничителя, выполненного с возможностью полезного ограничения амплитуды сигнала, и фильтра, при этом усилитель-ограничитель, фильтр, усилитель-формирователь уровней, аналого-цифровой преобразователь, арифметическое логическое устройство и цифроаналоговый преобразователь соединены последовательно.

Изобретение относится к неразрушающему контролю и может быть использовано для контроля качества углепластиковых объектов. Сущность изобретения заключается в том, что вихретоковый преобразователь для контроля качества углепластиковых объектов дополнительно снабжен третьей прямоугольной возбуждающей катушкой, вложенной во вторую, причем одна из сторон третьей возбуждающей катушки прилегает к пассивной стороне второй возбуждающей катушки, а противолежащая ей сторона третьей возбуждающей катушки находится на расстоянии С от пассивной стороны измерительной катушки, все возбуждающие катушки соединены последовательно, а первая и вторая возбуждающие катушки включены согласно относительно измерительной катушки.

Изобретение относится к неразрушающему контролю и может быть использовано для высокопроизводительного контроля качества, включающего сканирование поверхности контролируемого объекта. Сущность изобретения заключается в том, что многоэлементный вихретоковый преобразователь снабжен идентичными двум первым M дополнительными линейками с осями, параллельными оси х, соседние основные и дополнительные линейки последовательно смещены относительно друг друга по оси у на величину Dy, а каждая последующая k+1-я линейка (k = 1, 2,…, M+1) смещена по оси х относительно предыдущей k-й линейки на величину dсм =Dх/(M+2).

Изобретение относится к неразрушающему контролю и может быть использовано для высокопроизводительного контроля качества, включающего сканирование поверхности контролируемого объекта. Сущность изобретения заключается в том, что многоэлементный вихретоковый преобразователь снабжен идентичными двум первым M дополнительными линейками с осями, параллельными оси х, соседние основные и дополнительные линейки последовательно смещены относительно друг друга по оси у на величину Dy, а каждая последующая k+1-я линейка (k = 1, 2,…, M+1) смещена по оси х относительно предыдущей k-й линейки на величину dсм =Dх/(M+2).

Использование: для неразрушающего контроля поверхности катания и прилегающих к ней зон колес вагонов. Сущность изобретения заключается в том, что ручной сканер состоит из опорной рамы, частью которой является каретка с возвратным механизмом, заканчивающимся рукояткой, за которую оператор оттягивает каретку при установке сканера на колесо.

Использование: для контроля качества углепластиковых объектов. Сущность изобретения заключается в том, что вихретоковый преобразователь содержит прямоугольную измерительную катушку индуктивности, первую и вторую прямоугольные возбуждающие катушки, измерительная катушка вложена в первую возбуждающую катушку, плоскости витков возбуждающих катушек и измерительной катушки ортогональны рабочему торцу вихретокового преобразователя, активные стороны измерительной катушки и возбуждающей катушки параллельны друг другу и прилегают к рабочему торцу, а противолежащие им пассивные стороны этих катушек удалены друг от друга, вторая возбуждающая катушка размещена между пассивными сторонами измерительной катушки и второй возбуждающей катушки с зазором относительно пассивной стороны измерительной катушки, равным зазору между активными сторонами первой возбуждающей катушки и измерительной катушки.

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии многослойных углепластиковых объектов. Сущность изобретения заключается в том, что способ вихретокового контроля многослойных углепластиковых объектов дополнительно содержит этапы, на которых перед сканированием с помощью второй катушки индуктивности, идентичной первой, возбуждают в зоне контроля дополнительные вихревые токи, а второй вихретоковый сигнал получают под их воздействием, поворачивают вторую катушку относительно оси, нормальной к поверхности контролируемого объекта, регистрируют локальный максимум второго вихретокового сигнала U2 при угловой ориентации второй катушки, не совпадающей с угловой ориентацией первой, и фиксируют взаимное положение первой и второй катушек при полученной для них угловой ориентации.

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии многослойных углепластиковых объектов. Сущность изобретения заключается в том, что способ вихретокового контроля многослойных углепластиковых объектов дополнительно содержит этапы, на которых перед сканированием с помощью второй катушки индуктивности, идентичной первой, возбуждают в зоне контроля дополнительные вихревые токи, а второй вихретоковый сигнал получают под их воздействием, поворачивают вторую катушку относительно оси, нормальной к поверхности контролируемого объекта, регистрируют локальный максимум второго вихретокового сигнала U2 при угловой ориентации второй катушки, не совпадающей с угловой ориентацией первой, и фиксируют взаимное положение первой и второй катушек при полученной для них угловой ориентации.

Изобретение относится к неразрушающему контролю методом вихревых токов и может быть использовано для дефектоскопии и определения качества пайки сверхпроводящих токоведущих соединений. Технический результат, достигаемый заявляемым изобретением, заключается в уменьшении влияния внешних геометрических размеров соединений токоведущих шин на результаты контроля.

Изобретение относится к области теплотехники и может быть использовано для очистки отложений поверхности труб парогенератора. В способе удаления локальных отложений на теплообменных трубках парогенераторов атомной электростанции, заключающемся в том, что соединенный с подъемником манипулятор вводят в вертикальный коридор внутри теплообменника, с помощью гидродинамического манипулятора и по меньшей мере одного сопла, установленного с возможностью поворота вокруг поворотной оси, ориентация которой согласована с расстоянием между трубами в пучке труб теплообменника, выпускают водяную струю, поворачиваемую по отношению к очищаемой зоне, при этом манипулятор временно фиксируют в заданных позициях внутри вертикального коридора, предварительно выполняют измерения мощности дозы внутри парогенератора непосредственно в месте производства работ, на основании результатов измерений определяют допустимое время проведения работ, проводят измерение вихретоковых сигналов и анализ полученных сигналов для оценки состояния металла стенок теплообменных трубок и толщины отложений на них для поиска сектора с локальными отложениями, определяют координаты сектора очистки и производят расчет времени и режимов очистки, а очистку отложений производят ударным воздействием высоконапорной струи с применением последовательно перемещаемого гидродинамического манипулятора, установленного на монтажной раме с возможностью вращения и перемещения, размещенной в соответствии с определенными координатами сектора очистки, при установленном давлении подачи водяной струи. Технический результат - снижение времени очистки и повышение надежности удаления отложений. 3 ил. 
Наверх