Многоканальный приемник для радиотермометрической диагностики

Изобретение относится к медицине, а именно к многоканальным приемным устройствам для радиотермометра, предназначенного для измерения температуры внутренних органов тела человека путем измерения естественного уровня СВЧ-излучения. Устройство включает широкополосную антенну, выход которой подключен к одному входу СВЧ-переключателя, ко второму входу которого подключен общий для всех приемных каналов контрольный генератор шума. Выход переключателя, управляемого тактовым генератором, подключен к блоку предварительного широкополосного усиления, включающему в себя малошумящий усилитель с широкополосным фильтром и выходным усилителем. Сигнал с выхода блока предварительного усилителя поступает на вход N-канального СВЧ-делителя, к каждому выходу которого подключены приемные каналы, работающие параллельно и одновременно в каждом из измеряемых частотных диапазонов, обеспечивая усиление, фильтрацию, квадратичное детектирование и усиление сигналов низкой частоты с последующим выделением ключами. Ключи подключены к выходам усилителей и управляются коммутатором таким образом, что выделяются по два потока сигналов в каждом диапазоне, соответствующих уровням мощности исследуемого тела и генератора шума, интегральные уровни которых отражают соотношение температур тела и генератора шума, обработка которых блоком цифровой обработки позволяет формировать картограмму распределения температур исследуемого тела. Интегрированный сигнал уровня генератора шума используется для автоматического регулирования и стабилизации коэффициентов усиления каждого частотного канала. Достигается повышение скорости обследования и снижение погрешности измерений. 5 ил.

 

Изобретение относится к области медицинской техники к устройствам измерения температуры внутренних органов (областей) тела человека (животного) путем измерения естественного уровня СВЧ излучения, определяемого его температурой (радиотермометрия).

Глубина, расположение и геометрическое разрешение измеряемых областей определяются используемым диапазоном рабочих частот.

Одноканальные (однодиапазонные) радиотермометры работают в диапазонах от сотен МГц до 5-6 ГГц при полосах частот 10-20%, обеспечивая измерения на глубинах от 5-7 до 3-5 см с геометрическим разрешением от 20-15 до 7-5 мм.

Большинство публикаций посвящены именно одноканальным радиотермометрам.

Вместе с тем, необходимость получения объемной картограммы распределения температуры по площади и в объеме контролируемой области привело к появлению предложений о разработке многоканальных радиотермометров.

Известен однодиапазонный многоантенный радиотермограф, 5 антенн которого размещаются над исследуемой областью и последовательно в процессе измерений подключаются ко входу модуля. (Нанотехнологии: разработка, применение, №2, т. 9, изд-во Радиотехника, 2017 г., стр. 33). Электронный модуль представляет собой приемник прямого усиления с переносом радиочастотного спектра на видеочастоту путем непосредственного квадратичного детектирования принятого и усиленного сигнала с последующим усилением на видеочастоте до требуемого уровня (фиг. 1). В модуле осуществляется коммутация входных сигналов 13, поступающих последовательно от 5 антенн-аппликаторов. В состав одноканального модуля входит циркулятор 1, МШУ (малошумящий усилитель) 2 и 4, полосовой фильтр СВЧ 3, квадратичный детектор 5, полосовой фильтр 6, выходные усилители 7 и 8, генератор шума 9, сигналы управления 10, 11, 12. Такой многоканальный радиотермограф позволяет снимать температурную информацию последовательно с нескольких точек на теле, как поверхностных так и с глубины. При этом каждым каналом прибора регистрируется интегральное излучение из определенной области. Это несколько сокращает время измерений и повышает их точность.

Недостатками этого технического решения являются последовательный обзор различных требуемых при обследовании частотных диапазонов; применение коаксиальных переключателей, вносящих дополнительные погрешности из-за неидеального согласования и потерь; использование в каждом канале своего генератора шума, что может приводить к дополнительным погрешностям; неодновременность измерений в различных диапазонах, что также приводит к дополнительным ошибкам.

В работе (Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modeling. J.W. Hand, S. Mizushina и др. Institute of Physics Publishing. Physics in medicine and biology. №46. p. 1888. 2001 год) описан многоканальный 5-ти диапазонный радиотермограф со сдвоенной широкополосной антенной, работающий на частотах 1,2 ГГц, 1,65 ГГц, 2,3 ГГц, 3 ГГц, 3,6 ГГц (фиг. 2, прототип). В нем измерения проводятся также одновременно только на одном или двух из 5-ти каналов 14, 15, 16, 17, 18 путем переключения коаксиальных переключателей, что обеспечивает последовательное измерение всех 5-ти каналов. Это повышает скорость и объем обследования органа в 2,5-3 раза. Каждый канал включает в себя источник шума, циркулятор, усилитель, смеситель, детектор и др.

Недостатками этого технического решения являются: последовательный обзор частотных диапазонов; применение коаксиальных переключателей, вносящих дополнительные погрешности из-за неидеального согласования и потерь; использование в каждом канале своего генератора шума, что может приводить к дополнительным погрешностям; неодновременность измерений в различных диапазонах, что также приводит к дополнительным ошибкам.

Технический результат, достигаемый заявленным изобретением, заключается в том, что предлагаемое устройство реализации радиотермометра, обеспечивает проведение одновременных измерений температур в нескольких СВЧ частотных диапазонах без применения каких-либо переключений и с помощью единого источника опорного шумового генератора, также технический результат заключается в повышении скорости обследования и снижении погрешности измерений.

Технический результат достигается за счет использования конструкции устройства, в которой выход одной широкополосной антенны, принимающей сигналы всех измеряемых частотных диапазонов подключается к одному входу СВЧ переключателя, ко второму входу которого подключается общий для всех приемных каналов контрольный генератор шума. При этом выход переключателя, управляемого специальным тактовым генератором, подключен к блоку предварительного широкополосного усиления, включающему в себя малошумящий усилитель с широкополосным фильтром и выходным усилителем. Далее сигнал с выхода блока предварительного усилителя поступает на вход N-канального СВЧ-делителя мощности, к каждому выходу которого подключены приемные каналы, работающие параллельно и одновременно в каждом из измеряемых диапазонов, обеспечивая усиление, фильтрацию, квадратичное детектирование и усиление сигналов низкой частоты с последующим выделением ключами, подключенными к выходам усилителей и управляемых коммутатором таким образом, что выделяются по два потока сигналов в каждом диапазоне, соответствующих уровням мощности исследуемого тела и генератора шума, интегральные уровни которых отражают соотношение температур тела и генератора шума, обработка которых блоком цифровой обработки по специальным программам позволяет формировать картограмму распределения температур исследуемого тела; при этом интегрированный сигнал уровня генератора шума используется для автоматического регулирования и стабилизации коэффициентов усиления каждого частотного канала.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ.

На фиг. 1 представлен приемник прямого усиления с переносом радиочастотного спектра на видеочастоту путем непосредственного квадратичного детектирования принятого и усиленного сигнала с последующим усилением на видеочастоте до требуемого уровня. В модуле осуществляется коммутация входных сигналов 13, поступающих последовательно от 5 антенн-аппликаторов. В состав одноканального модуля входит циркулятор 1, МШУ (малошумящий усилитель) 2 и 4, полосовой фильтр СВЧ 3, квадратичный детектор 5, полосовой фильтр 6, выходные усилители 7 и 8, генератор шума 9, сигналы управления 10, 11, 12.

На фиг. 2 представлен многоканальный 5-ти диапазонный радиотермограф со сдвоенной широкополосной антенной, работающий на частотах 1,2 ГГц, 1,65 ГГц, 2,3 ГГц, 3 ГГц, 3,6 ГГц.

На фиг. 3 представлена структурная схема предлагаемого технического решения. Структурная схема включает антенну-аппликатор 19, радиоблок 20, блок цифровой обработки 21, компьютер 22, коаксиальный кабель 23, сигнал тактового генератора 24.

На фиг. 4 представлена структурная схема антенны-аппликатора, в состав которой входит широкополосная антенна 30 с полосой частот, равной сумме полос всех каналов (например, от 1 до 4 ГГц). В ней же размещается переключатель 26, усилители 27, 29 и фильтр 28 с полосой, равной полной полосе всех каналов, обеспечивающих предварительное усиление сигналов на величину 40-50 дБ, генератор шума 31.

На фиг. 5 представлена структурная схема блока цифровой обработки, которая включает в себя делитель мощности 32, усилители 33, 36,39, фильтры 34 и 38, квадратичный детектор 37, тактовый генератор 35, ключи 40 и 42, коммутатор 41, интеграторы 43 и 44.

Сущность настоящего технического решения заключается в том, что предлагается следующая конструкция построения и функционирования многоканального приемника радиотермометра. Сигналы широкополосной антенны 30 и опорного генератора шума 31, подключенные к двум входам СВЧ переключателя 26, управляемого тактовым генератором 35, попеременно с частотой порядка 1 кГц, с выхода переключателя подаются на вход предварительного широкополосного СВЧ усилителя с полной полосой всех исследуемых диапазонов, например, 5-ти в полосе 1-4 ГГц, объединенных в конструкции антенны-аппликатора (АА). Предварительный широкополосный усилитель включает в себя малошумящий усилитель 27 с широкополосным фильтром 28 и выходным усилителем 29. Выходной широкополосный сигнал АА поступает на вход многоканального СВЧ делителя 32 с числом выходов, равным числу частот измеряемых каналов. К каждому выходу делителя сигналов подключаются усилительно-фильтрующие радиоканалы с полосовыми фильтрами 34 и 38, выделяющими нужные полосы с заданными центральными частотами. Выходные сигналы СВЧ каналов детектируются квадратичными детекторами 37, выделяя униполярные шумоподобные последовательности сигналов пропорциональных температурам тела измеряемого тела и шумового генератора. К выходам усилителей 39, повышающим уровень продетектированных сигналов подключаются по два ключа 40 42, управляемых тактовым генератором 35 и коммутатором 41, выделяющих последовательности сигналов измеряемого тела и шумового генератора. Амплитуды интегрированных сигналов двух потоков 43, 44 каждого частотного канала радиотермометра определяют соотношение температуры тела и шумового генератора. Параллельная подача пар сигналов каждого диапазона на вход блока цифровой обработки или компьютера позволяет определить температуру исследуемого тела. Для уменьшения ошибок из-за нелинейности каналов усиления и возможной перегрузки выходные сигналы интеграторов опорных каналов подаются на входные усилители СВЧ каналов 33 для автоматической стабилизации коэффициента усиления 45 трактов радиоблока. Для устранения неравномерности коэффициентов передачи сигналов в полной полосе работы радиотермометра усилительно-фильтрующим каналом АА и многоканального делителя СВЧ сигналов предусматривается параллельный режим калибровки каждого частотного диапазона. Неравномерность коэффициента передачи антенны в пределах полной полосы заносится в память блока цифровой обработки и учитывается программно при вычислении температуры объекта. Обработка многоканальных сигналов радиоблока может осуществляться либо специальным блоком цифровой обработки, либо компьютером по специальной программе в случае преобразования параллельных потоков в единый последовательный специальным преобразователем.

Структурная схема предлагаемого устройства приведена на фиг. 3. В него входят: антенна-аппликатор 19, радиоблок 20, блок цифровой обработки 21, компьютер 22, коаксиальный кабель 23, сигнал тактового генератора 24.

Антенна-аппликатор (АА) 19 (фиг. 4) включает в свой состав широкополосную антенну 30 с полосой частот, равной сумме полос всех каналов (например, от 1 до 4 ГГц). В ней же размещается переключатель 26, обеспечивающий по командам тактового генератора ТГ 35 (фиг. 5) попеременное подключение входа приемника к антенне 30 и генератору шума 31 (фиг. 4).

В АА также входит СВЧ усилители 27, 29 и фильтр 28 с полосой, равной полной полосе всех каналов, обеспечивающих предварительное усиление сигналов на величину 40-50 дБ.

С выхода АА СВЧ сигнал по коаксиальному кабелю передается на радиоблок 20 (фиг. 3).

Выходной сигнал АА подается на вход СВЧ делителя мощности 32 радиоблока (РБ), к 5-ти выходам которого подключаются 5 радиоканалов, идентичных по структуре, но работающих в выбранных частотных диапазонах. Например, 1,2ГГц, 1,65ГГц, 2,ЗГГц, ЗГГц и 3,6ГГц с полосами частот порядка 15%, что обеспечивается СВЧ фильтрами 34.

Так как структурно и режимно работа всех 5 каналов идентична рассмотрим режимы калибровки и измерений одного канала.

Конструктивно делитель 32 может быть выполнен в микрополосковом варианте с потерями от входа до выхода каждого канала с потерями 8-10 дБ.

Для обеспечения работы детектора 37 в квадратичном режиме, при котором его выходное напряжение пропорционально подводимой СВЧ мощности, усиление тракта от выхода антенны 30, переключателя 26, усилителей 27 и 29, фильтра 28, делителя 32, усилителей 33 и 36 и фильтра 34 должно быть порядка 80-90 дБ.

Выходной сигнал детектора 37 после фильтра низкой частоты 38, отсекающего сигналы переходных процессов переключателя 26 и гармоник, увеличивается усилителем 39 до величины нескольких вольт.

На выходе усилителя 39 в режиме измерений выделяется регулярная последовательность периодических униполярных шумоподобных импульсов с амплитудами, пропорциональным температурам «тела» и ГШ 31.

Для разделения последовательностей импульсов «тела» и ГШ, к выходу усилителя 39 подключаются параллельно два ключа 40 и 42, управляемых коммутатором 41 таким образом, что на выходе ключа 40 выделяются сигналы «тела», а на выходе ключа 42 сигналы ГШ 31.

Так как сравнение амплитуд шумоподобных униполярных импульсных сигналов не обеспечивает точности, импульсные последовательности ключей 40 и 42 подаются на интеграторы 43 и 44, с временем интегрирования порядка 0,5-1,0 секунд. На выходах интеграторов формируются постоянные напряжения, которые подаются на входные высокоразрядные АЦП блока цифровой обработки БЦО 21.

Зная температуру ГШ и соотношение напряжений канала «тело» и канала ГШ, с помощью соответствующей программы работы БЦО можно определить температуру «тела» с точностью до младшего разряда АЦП.

Для оптимизации и стабилизации работы детектора в нужной точке квадратичной характеристики, выходное напряжение интегратора 43 параллельно используется для автоматической регулировки усиления усилителя 33.

Входные сигналы антенны 30 и ГШ 31 усиливаются одним и тем же каналом от входа усилителя 27 до выхода усилителя 39, что обеспечивает сохранение соотношения их амплитуд с нужной точностью. Однако, использование ключей 40 и 42 может вносить погрешность из-за разности в их потерях.

Для устранения этих ошибок можно использовать режим «калибровки», реализуемый следующим образом.

Входной переключатель 26 постоянно находится в положении ГШ. Выходные сигналы интеграторов каналов «тело» и «ГШ» должны быть одинаковы в случае идентичности ключей 40 и 42 и различаться в случае отличий их характеристик. В этом случае, должна определяться степень отличия сигнала канала «тело», и по спецпрограмме вычисляться поправка, заносимая в оперативную память БЦО и учитываться при формулировании выходных сигналов на монитор или принтер.

Время проведения калибровки составит 2-3 секунды и может проводиться либо в начале измерений, либо периодически в процессе обследования.

Вторым, возможным источником межканальных ошибок измерений может служить неравномерность амплитудно-частотной характеристики антенны. Для устранения этих ошибок АЧХ антенны должна быть измерена и внесена в постоянную память БЦО.

Многоканальное приемное устройство для радиотермометра, предназначенного для измерения температуры внутренних органов тела человека путем измерения естественного уровня СВЧ-излучения, определяемого температурой внутренних органов тела, включающее широкополосную антенну, принимающую сигналы всех измеряемых частотных диапазонов, выход которой подключен к одному входу СВЧ-переключателя, ко второму входу которого подключен общий для всех приемных каналов контрольный генератор шума, при этом выход переключателя, управляемого тактовым генератором, подключен к блоку предварительного широкополосного усиления, включающему в себя малошумящий усилитель с широкополосным фильтром и выходным усилителем, при этом сигнал с выхода блока предварительного усилителя поступает на вход N-канального СВЧ-делителя, к каждому выходу которого подключены приемные каналы, работающие параллельно и одновременно в каждом из измеряемых частотных диапазонов, обеспечивая усиление, фильтрацию, квадратичное детектирование и усиление сигналов низкой частоты с последующим выделением ключами, подключенными к выходам усилителей и управляемых коммутатором таким образом, что выделяются по два потока сигналов в каждом диапазоне, соответствующих уровням мощности исследуемого тела и генератора шума, интегральные уровни которых отражают соотношение температур тела и генератора шума, обработка которых блоком цифровой обработки позволяет формировать картограмму распределения температур исследуемого тела, при этом интегрированный сигнал уровня генератора шума используется для автоматического регулирования и стабилизации коэффициентов усиления каждого частотного канала.



 

Похожие патенты:

Изобретение предназначено для океанологических исследований и может быть использовано при построении автономных и зондирующих устройств для определения комплексных гидрофизических параметров морской воды, а также может быть использовано для контроля различных примесей, пузырьков газа, взвешенных твердых частиц не только в морской, но и в речных и сточных водах и для исследования физических свойств воды, смесей жидкостей и уточнения эмпирических выражений при определении термодинамических величин и молекулярных свойств жидкостей.

Изобретение относится к измерительной технике в области термометрии и может быть использовано при научных исследованиях и диагностике различных термодинамических процессов. Согласно заявляемому способу путем варьирования заданным физическим параметром последовательно создают несколько заданных значений величины теплового потока между измеряемым объектом и термопреобразователем как средством измерения температуры объекта.

Группа изобретений относится к трубопроводному транспорту углеводородных продуктов. В способе по трубопроводу пропускают устройство, включающее внутритрубный поршень, оснащенный пенополиуретановым диском.

Изобретение относится к измерительной технике. Согласно способу определяют коэффициент излучения контролируемой поверхности объекта, для чего с помощью бесконтактного термографа измеряют температуру поверхности объекта Т(εк), где εк - коэффициент излучения поверхности объекта, наносят на поверхность объекта образцовый материал, измеряют с помощью бесконтактного термографа температуру поверхности образцового материала Т0(ε0), где ε0 - коэффициент излучения поверхности образцового материала, определяют коэффициент излучения поверхности объекта εк путем решения уравнения: Т(εк)=Т0(ε0).

Изобретение относится к методам и средствам наземных испытаний элементов летательного аппарата (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на поверхности элементов ЛА, например, обтекатели головок самонаведения авиационных ракет, антенные обтекатели, отсеки с ракетой в наземных условиях.

Изобретение относится к области измерительной техники и может быть использовано для бесконтактного измерения и мониторинга температуры объектов, находящихся под воздействием электромагнитного микроволнового излучения высокой интенсивности. Устройство бесконтактного измерения температуры объекта, находящегося под воздействием микроволнового излучения в СВЧ-камере, содержит цветовые пирометрические датчики и термисторы или термопары, соединенные с контроллером.

Изобретение относится к области измерительной техники и может использоваться для контроля за отложениями, образующимися на используемом устройстве, которые могут отрицательно повлиять на производительность устройства и/или эффективность текучей среды по ее прямому назначению. Системы потока текучей среды могут содержать одно или большее количество термоэлектрических устройств, контактирующих с текучей средой, протекающей через систему.

Изобретение относится к области строительства, в частности для реализации косвенного температурного контроля, может быть использовано во время проведения мониторинга состояния температуры бетонной смеси, при изготовлении железобетонных конструкций. Предложен способ для проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии, в котором измерения производятся бесконтактным способом.
Изобретение относится к термометрии и предназначено для измерения температуры, в том числе для полевого измерения температуры грунта. Система для измерения температуры включает в себя, по меньшей мере, один датчик температуры, устройство для считывания результатов измерений с упомянутого датчика температуры и/или записи результатов измерений в память и/или передачи результатов измерений по каналам связи и/или выполнения измерений, приемник глобальной системы позиционирования, позволяющий определять место и/или время измерений, и блок формирования электронно-цифровой подписи, выполненный в виде аппаратного или программного модуля, обеспечивающий отсутствие искажений информации, получаемой при измерениях, или фальсификаций самого факта измерений и, при необходимости, указание лица, производящего измерения и/или уникальных номеров датчиков температуры и/или упомянутого устройства.

Термометр // 2725697
Изобретение относится к области термометрии и может быть использовано для определения и/или мониторинга температуры среды. Предложено устройство (1) для определения и/или мониторинга температуры (Т) рабочей среды (5) и способ изготовления соответствующего устройства (1).

Изобретение относится к измерительной технике. Согласно способу определяют коэффициент излучения контролируемой поверхности объекта, для чего с помощью бесконтактного термографа измеряют температуру поверхности объекта Т(εк), где εк - коэффициент излучения поверхности объекта, наносят на поверхность объекта образцовый материал, измеряют с помощью бесконтактного термографа температуру поверхности образцового материала Т0(ε0), где ε0 - коэффициент излучения поверхности образцового материала, определяют коэффициент излучения поверхности объекта εк путем решения уравнения: Т(εк)=Т0(ε0).
Наверх