Способ извлечения алмазов из руд и промпродуктов

Предложенное изобретение относится к области добычи полезных ископаемых и в частности к способам извлечения алмазов из руд и промпродуктов, включающим обработку обогащаемых классов исходного сырья люминофорсодержащими эмульсиями, содержащими композицию люминофоров из антрацена сцинтилляционного и ортосиликата цинка, активированного марганцем, и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения. Способ извлечения алмазов из руд и промпродуктов включает обработку обогащаемых классов исходного сырья люминофорсодержащими эмульсиями, содержащими композицию люминофоров из антрацена сцинтилляционного и ортосиликата цинка, активированного марганцем, и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения. Композиция люминофоров предварительно измельчается до крупности -5+0 мкм и в массовом соотношении от 1:100 до 1:300 смешивается с органической фазой, состоящей из нефтяных масел и компонентов средней дистиллятной фракции нефти. Эмульсию получают диспергированием люминофорсодержащей органической фазы в воде при массовом соотношении органической фазы и воды от 1:50 до 1:20. В качестве органической фазы используют дизельное топливо или смесь из дизельного топлива и мазута флотского Ф-5 в массовом соотношении более 10:1. Дополнительно в эмульсию подают реагент-диспергатор класса водорастворимых фосфатов, например, тринатрийфосфат при концентрации от 1 до 1,5 г/л. Технический результат - увеличение извлечения алмазов без увеличения выхода концентрата. 3 з.п. ф-лы, 1 ил., 4 табл., 1 пр.

 

Изобретение относится к области добычи полезных ископаемых и в частности к способам извлечения алмазов из руд и промпродуктов включающие обработку обогащаемых классов исходного сырья люминофорсодержащими эмульсиями, содержащими композицию люминофоров из антрацена сцинтилляционного и ортосиликата цинка, активированного марганцем, и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения.

Известен способ извлечения алмазов из руд и промпродуктов, включающий разделение исходного сырья по классам крупности и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения [Шлюфман Е.М., Миронов B.П., Гурва Л.А., Цхай Н.К. Состояние и перспективы радиометрической сепарации алмазов. // Горный Журнал. - 2005. - 7. - C. 102-105.].

Данный способ не обеспечивает извлечение алмазов, спектральные характеристики которых не полностью соответствуют настройкам рентгенолюминесцентных сепараторов или обладают слабым сигналом. Такими характеристиками обладают мало- и безазотные алмазы, а также алмазы с повышенным содержанием других элементов.

Наиболее близким по технической сущности и достигаемому результату является способ извлечения алмазов из руд и промпродуктов, включающий обработку обогащаемых классов исходного сырья люминофорсодержащими эмульсиями, содержащими композицию люминофоров из антрацена сцинциляционного и ортосиликата цинка, активированного марганцем (люминофор К-35 или ФЛ-530), и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения [Чантурия В.А., Двойченкова Г.П., Морозов В.В., Яковлев В.Н., Ковальчук О.Е., Подкаменный Ю.А. Экспериментальное обоснование состава люминофорсодержащих композиций для извлечения нелюминесцирующих алмазов // Физико-технические проблемы разработки полезных ископаемых. 2019. №1. С. 128-136 (прототип)].

Указанный способ способствует повышению извлечения алмазов, спектральные характеристики которых не полностью соответствуют настройкам рентгенолюминесцентных сепараторов или характеризуются слабым сигналом. Однако, данный метод характеризуется высоким расходом люминофорсодержащей композиции и большим выходом в концентрат пиропа, эпидота, оливина и других минералов, на которых так же происходит закрепление люминофорсодержащей композиции.

Технической задачей изобретения является увеличение извлечения алмазов без увеличения выхода концентрата за счет повышения селективности закрепления люминофорсодержащей композиции на поверхности алмазов.

Указанная цель достигается тем, что в способе извлечения алмазов из руд и промпродуктов, включающем обработку обогащаемых классов исходного сырья люминофорсодержащими эмульсиями, содержащими композицию из антрацена сцинциляционного и ортосиликата цинка, активированного марганцем и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения, композиция люминофоров предварительно измельчается до крупности -5+0 мкм, и в массовом соотношении от 1:100 до 1:300 смешивается с органической фазой, состоящей из нефтяных масел и компонентов средней дистиллятной фракции нефти, а эмульсию получают диспергированием люминофорсодержащей органической фазы в воде при массовом соотношении органической фазы и воды от 1:50 до 1:20.

В качестве органической фазы также используют дизельное топливо или смесь из дизельного топлива и мазута флотского Ф-5 в массовом соотношении более 10:1.

Кроме того, в эмульсию подают реагент-диспергатор класса водорастворимых фосфатов, например, тринатрийфосфат при концентрации от 1 до 1,5 г/л.

Сущность изобретения поясняется чертежом, на котором приведена принципиальная схема устройства для извлечения алмазов из руд и промпродуктов.

Устройство содержит приспособление для разделения исходного питания на классы крупности (грохота) -1, емкости для обработки выделенного класса исходного питания люминофорсодержащей эмульсией -2, приспособления для удаления люминофорсодержащей эмульсии (грохота) -3, дозатора исходного питания -4 и рентгенолюминесцентного сепаратора -5. Технологическая цепочка аппаратов 1-5 оснащена приспособлением для приготовления и дозирования люминофорсодержащей эмульсии, выполненной в виде двух последовательно установленных емкостей -6 и -7 с мешалками, оснащенных дозаторами реагентов и воды, и предназначенных для приготовления смеси люминофоров с органической фазой из нефтяных масел и компонента средней дистиллятной фракции нефти (емкость -6) и для приготовления или восстановления эмульсии (емкость -7). Для возврата эмульсии в технологический процесс установлен зумпф -8 с возвратным насосом.

Способ реализуется следующим образом.

Руда или промпродукт (хвосты основной рентгенолюминесцентной сепарации) подаются на грохот -1, где разделяется на классы крупности +3 -6 мм, +1,2-3 мм и шламы. Классы крупности +3 -6 мм, +1,2-3 мм представляющие собой исходное питание операции контрольной рентгенолюминесцентной сепарации поступают в емкость -2, где в режиме интенсивного перемешивания осуществляется их обработка водной эмульсией, содержащей смесь композиции люминофоров с органической фазой. При обработке исходного питания эмульсией люминофорсодержащая органическая фаза селективно закрепляется на поверхности алмазов. После обработки исходного питания избыток люминофорсодержащей эмульсии отделяется на грохоте -3.

Обработанный алмазосодержащий продукт поступает в рентгенолюминесцентный сепаратор -4, где с использованием амплитудно-кинетического метода производят разделение алмазов и породных минералов. Закрепившаяся на поверхности алмазов люминофорсодержащая композиция генерирует оптический сигнал в области 400-620 нм, который по соотношению быстрой и медленной компонент полностью соответствует настройкам детектора сепаратора в режиме используемого амплитудно-кинетического метода, что обеспечивает извлечение в концентрат как кондиционных кристаллов, так и кристаллов алмаза, которые не полностью соответствуют настройкам рентгенолюминесцентных сепараторов или обладают слабым сигналом. Получаемый алмазосодержащий концентрат поступает на доводку, а хвосты направляются в операцию самоизмельчения.

Дозируемая в емкость -2 люминофорсодержащая эмульсия приготавливается в по специальной методике. Первоначально композицию из антрацена сцинциляционного и ортосиликата цинка, активированного марганцем (люминофор К-35) измельчают до крупности -5 +0 мкм (на чертеже не показано), затем в емкости -6 измельченную композицию дозируют и смешивают в массовом соотношении от 1:100 до 1:300 с органической фазой, состоящей из нефтяных масел и компонента средней дистиллятной фракции нефти. В качестве соответствующих компонентов органической фазы используют дизельное топливо «летнее» или смесь дизельного топлива «летнего» и мазута флотского Ф5 (ГОСТ 10585-75) в массовом соотношении более 10:1.

Полученная смесь дозируют в емкость -7, куда одновременно подают воду и раствор реагента-диспергатора, например, полифосфата натрия. При этом поддерживают массовое соотношение между массами приготовленной смеси люминофорсодержащей композиции с органической фазой и добавляемой воды от 1:50 до 1:20. В режиме интенсивного перемешивания образуется устойчивая люминофорсодержащая эмульсия, которая напрямую, или через промежуточную емкость (на чертеже не показана) дозируется в емкость -2. Люминофорсодержащая эмульсия, отделенная на грохоте 3 от обработанного эмульсией исходного питания рентгенолюминесцентной сепарации накапливается в зумпфе 8 и направляется через емкость -7 в емкость 2.

Предварительное измельчение люминофорсодержащей композиции до крупности -5+0 мкм и ее смешивание с органической фазой, состоящей из нефтяных масел и компонента средней дистиллятной фракции нефти в соотношении от 1:100 до 1:300, обеспечивает образование агрегативно устойчивой масло-водной дисперсной системы, органическая фаза которой характеризующейся высокой адсорбционной способностью по отношению к поверхности алмазов. Кроме того, при соотношении менее 1:300 наблюдается резкое снижение интенсивности люминесценции, а при соотношении более 1:100 наблюдается существенное увеличение скорости снижения люминесценции, обусловленное быстрым агрегированием частиц неорганического люминофора (см. Таблица 1). Данными таблицы 1 обоснована целесообразность уменьшения крупности люминофорсодержащей композиции с -50 +0 до -5 +0 мкм.

Выбор оптимальных режимов приготовления люминофорсодержащей эмульсии проводили с использованием сепаратора «Полюс-М». Установки режима рентгенолюминесцентной сепарации соответствовали применяемым в промышленных аппаратах. Для экспериментов использовали коллекцию алмазов (20 шт), не извлекающихся в процессе рентгенолюминесцентной сепарации, а также безалмазной пробы хвостов рентгенолюминесцентной сепарации (100 кристаллов пиропа, оливина и эпидота, пикроильменита и других минералов).

В процессе экспериментов варьировали соотношение органической фазы и воды, а также компонентный состав органической фазы.

Результаты проверки показали следующее. Приготовление и использование эмульсии из органической фазы и воды при соотношении от 1:50 до 1:20 для обработки исходного сырья обеспечивает наиболее высокое извлечение алмазов (75-80%, Таблица 2). Наблюдение за процессом показало, что в выбранном режиме капли органической фазы в эмульсии кинетически устойчивы и хорошо закрепляются на алмазах и практически не закрепляются на поверхности большинства породных минералов. При соотношении органической фазы и воды менее 1:50 извлечение алмазов снижается, поскольку существенно увеличивается время, необходимое для закрепления люминофорсодержащей эмульсии на алмазах. При соотношении органической фазы и воды более 1:20 наблюдалось снижение извлечения алмазов вследствие снижения устойчивости люминофорсодержащей эмульсии и ее расслаивания.

Наилучшие результаты были достигнуты при использовании в качестве органической фазы дизельного топлива «летнего», а также смеси дизельного топлива «летнего» и мазута флотского Ф-5 в соотношении более 10:1. В выбранных пределах соотношений обеспечивается максимальное извлечение (более 75%) обработанных люминофорсодержащей эмульсии алмазов в концентрат РЛС (таблица 2). Снижение селективности процесса при увеличенной доле мазута (при соотношениях 5:1 и 3:1) обусловлено уменьшением светимости люминофоров под действием окрашенных фракций мазута.

Подача в эмульсию реагента-диспергатора, например, полифосфата натрия повышает селективность сепарации. Результаты проверки показали, что наилучшие результаты (разность извлечений алмаза и минералов кимберлита более 70%) наблюдается при концентрации полифосфата натрия от 1 до 1,5 г/л (таблица 3).

Пример.

Способ был опробован в условиях операции рентгенолюминесцентной сепарации на сепараторе «Полюс-М». Исходная проба содержала безалмазные хвосты 2-й стадии рентгенолюминесцентной сепарации (класс -6 +3 мм) и 100 кристаллов алмаза той-же крупности, извлеченных из концентрата той же операции.

В первой серии опытов обработку исходного питания люминофорсодержащей эмульсией не проводили. Во второй серии опытов обработку алмазов и минералов проводили путем перемешивания с люминофорсодержащей композицией из антрацена сцинциляционного и ортосиликата цинка, активированного марганцем (люминофор К-35), что соответствовало описанию в прототипе. В третьей серии опытов использовали технологию, описанную в 1 и 2 пункта формулы изобретения, предполагающую доизмельчение композиции люминофоров и использование эмульсии на основе дизельного топлива «летнего» при средних значениях соотношений компонентов в заявляемых диапазонах (соотношении антрацена сцинтилляционного и ортосиликата цинка, активированного марганцем 1:200; соотношении органической фазы и воды 1:30). В четвертой серии использовали смесь дизельного топлива «летнего» и мазута флотского Ф5 в массовом соотношении 20:1. В пятой серии в эмульсию дополнительно подавали тринатрийфосфат при концентрации от 1,25 г/л.

Анализ представленных в Таблице 4 результатов сепарации алмазосодержащего продукта - хвостов основной операции РЛС на приборе «Полюс-М» показывает, что использование предложенного способа позволяет повысить извлечения алмазов на 18-21% при снижении извлечения в концентрат породных минералов в 1,5-2 раза. Расход люминофоров при этом снижается на 15-20%. Анализ спектрально-кинетических характеристик минералов кимберлита, проведенный н сепараторе «Полюс-М), показал, что повышение показателей сепарации достигается за счет снижения интенсивности сигналов приобретенной рентгенолюминесценции породных минералов и выдерживания величины свертки сигнала люминесценции и соотношения быстрой и медленной компонент для породных минералов за пределами диапазона параметров анализатора, соответствующего режиму извлечения в концентрат.

1. Способ извлечения алмазов из руд и промпродуктов, включающий обработку обогащаемых классов исходного сырья люминофорсодержащими эмульсиями, содержащими композицию люминофоров из антрацена сцинтилляционного и ортосиликата цинка, активированного марганцем, и извлечение алмазов рентгенолюминесцентной сепарацией с использованием амплитудно-кинетического метода разделения, отличающийся тем, что композиция люминофоров предварительно измельчается до крупности -5+0 мкм и в массовом соотношении от 1:100 до 1:300 смешивается с органической фазой, состоящей из нефтяных масел и компонентов средней дистиллятной фракции нефти, а эмульсию получают диспергированием люминофорсодержащей органической фазы в воде при массовом соотношении органической фазы и воды от 1:50 до 1:20.

2. Способ извлечения алмазов из руд и промпродуктов по п. 1, отличающийся тем, что в качестве органической фазы используют дизельное топливо.

3. Способ извлечения алмазов из руд и промпродуктов по пп. 1, 2, отличающийся тем, что в качестве органической фазы используют смесь дизельного топлива и мазута флотского Ф5 в массовом соотношении более 10:1.

4. Способ извлечения алмазов из руд и промпродуктов по пп. 1-3, отличающийся тем, что в эмульсию подают реагент-диспергатор класса водорастворимых фосфатов, например, тринатрийфосфат при концентрации от 1 до 1,5 г/л.



 

Похожие патенты:

Предложены аппарат и способ для сортировки драгоценных камней из партии драгоценных камней. Аппарат содержит один или более пунктов измерения, каждый из которых содержит по меньшей мере одно измерительное устройство, выполненное с возможностью измерения одного или более свойств драгоценного камня.

Изобретение относится к способу и устройству для оптического анализа фруктов или овощей. Различные источники (7a, 7b) света выполнены с возможностью подачи светового излучения в различных спектральных диапазонах селективно на каждый объект в соответствии с заданной последовательностью освещения, а изображения формируются посредством по меньшей мере одной цветной камеры (4), чувствительной к инфракрасному излучению.

Изобретение относится к устройству для измерения продуктов, таких как овощи и фрукты, к системе сортировки, снабженной этим устройством, и соответствующему способу. Устройство для измерения параметров качества продуктов, таких как фрукты, содержащее раму, снабженную несколькими подвижными опорами для размещения на них или между ними продуктов и перемещения этих продуктов в направлении транспортирования, и датчик, выполненный с возможностью измерения или серии измерений параметров качества продуктов, расположенных на подвижных опорах или между ними, при этом по меньшей мере части датчика выполнены так, что позволяют датчику выполнять измерения на расстоянии над продуктом по линии измерения, расположенной под углом от 20 до 70° относительно направления транспортирования.

Группа изобретений относится к спектроскопическому исследованию сырого картофеля. Способ обнаружения предшественников акриламида в сыром картофеле включает освещение поверхности сырого картофеля лучом света, измерение интенсивности внутренне рассеянного картофелем света, измерение интенсивности зеркально отраженного от поверхности картофеля света, генерирование сигнала обнаружения на основе отношения измеренной интенсивности внутренне рассеянного света и измеренной интенсивности зеркально отраженного света.

Изобретение относится к измерительному устройству для многоспектрального измерения продуктов, таких как овощи и фрукты, к системе сортировки, снабженной таким устройством, и соответствующему способу. Измерительное устройство согласно изобретению содержит раму, снабженную транспортерным средством для транспортировки продуктов, систему камер, снабженную по меньшей мере одним источником света и по меньшей мере одной камерой для записи изображения при определенной частоте или частотном спектре, а также контроллер, функционально соединенный с системой камер, для управления системой камер, при этом контроллер снабжен системой обработки данных и системой обнаружения.

Изобретение относится к измерительному устройству для многоспектрального измерения продуктов, таких как овощи и фрукты, к системе сортировки, снабженной таким устройством, и соответствующему способу. Измерительное устройство согласно изобретению содержит раму, снабженную транспортерным средством для транспортировки продуктов, систему камер, снабженную по меньшей мере одним источником света и по меньшей мере одной камерой для записи изображения при определенной частоте или частотном спектре, а также контроллер, функционально соединенный с системой камер, для управления системой камер, при этом контроллер снабжен системой обработки данных и системой обнаружения.

Изобретение относится к способам контроля качества овощей и фруктов при их сортировке на конвейере. Сортируемые объекты сельскохозяйственной продукции шарообразной формы совершают поступательное перемещение на рольганговом конвейере и одновременно вращаются.

Предложенное изобретение относится к сельскому хозяйству и может быть использовано для выделения фракции с определенным содержанием стекловидных зерен из товарного зерна тритикале и ржи. Устройство для сепарации зерен тритикале и ржи по степени стекловидности включает фотосепаратор, обеспечивающий возможность анализа спектров отражения отдельных семян с оптической системой и системой управления сепарацией.

Предложенное изобретение относится к сельскому хозяйству и может быть использовано для выделения фракции с определенным содержанием стекловидных зерен из товарного зерна пшеницы и риса. Устройство для сепарации зерен пшеницы и риса по степени стекловидности включает фотосепаратор, обеспечивающий возможность анализа спектров отражения отдельных семян с оптической системой и системой управления сепарацией.

Изобретение относится к области определения потребительских характеристик пищевой продукции и касается способа определения времени созревания по меньшей мере одного плода. Способ включает в себя измерение оптического спектра отраженного от плода излучения белого светодиода в диапазоне от 440 до 1000 нм и обработку массива измеренных спектральных данных.

Предложенная группа изобретений относится к способу оптического измерения параметров вещества пенной флотации, к системе для осуществления упомянутого способа и управлению способом флотации на основании измеренного параметра. Способ оптического измерения параметров вещества пенной флотации, содержащего молекулы коллектора, которые адаптированы для связывания с минеральными частицами, содержащимися в веществе пенной флотации для увеличения гидрофобности поверхности упомянутых минеральных частиц, включает стадии: добавления предварительно определенного количества молекул индикатора к, по меньшей мере, части вещества пенной флотации, где упомянутые молекулы индикатора адаптированы для специфического связывания с молекулами коллектора в веществе пенной флотации и где молекулы индикатора выбирают таким образом, чтобы реакция связывания между упомянутыми молекулами индикатора и молекулами коллектора вызывала детектируемое изменение спектра оптического поглощения упомянутых молекул индикатора, после этого измерения при использовании света измерения из светоизлучающего блока, по меньшей мере, части упомянутого спектра оптического поглощения упомянутых молекул индикатора в веществе пенной флотации; и после этого определения, исходя из измеренной части спектра оптического поглощения, упомянутых молекул индикатора, количества или концентрации молекул остаточного коллектора в веществе пенной флотации.
Наверх