Способ калибровки счетного канала реактиметра

Изобретение относится к области реакторных измерений и может быть использовано в системах контроля и управления ядерных реакторов. Размещают первый источник ионизирующего излучения на заданном расстоянии от детектора и определяют показания калибруемого счетного канала. Для второго, третьего и т.д. до n источников при поочередном их размещении на указанном от детектора расстоянии рассчитывают активность каждого из источников на момент испытаний и для каждого из них определяют расчетные значения скорости счета по отношению к измеренному значению, полученному для первого источника излучения. Последовательно, при наличии второго, третьего и т.д. до n источников определяют показания калибруемого счетного канала и значения активности каждого из упомянутых источников и вычисляют ΔNi - величину относительного отклонения показания калибруемого счетного канала от расчетного значения при установленном i-ом источнике. Полученные значения ΔNi аппроксимируют функцией зависимости величины относительных отклонений от показаний калибруемого счетного канала и вычисляют скорость счета. Технический результат - повышение точности калибровки счетного канала во всем диапазоне импульсного режима работы реактиметра, упрощение и ускорение процедуры калибровки импульсного канала реактиметра. 2 з.п. ф-лы.

 

Изобретение относится к области реакторных измерений и может быть использовано в системах управления, контроля и защиты ядерных установок.

Известен способ калибровки счетного канала реактиметра [патент RU №2653163, опубл. 07.05.2018], включающий контроль плотности нейтронного потока в активной зоне ядерного реактора с помощью подключенной к счетному каналу реактиметра урановой камеры деления, перемещение регулирующего мощность реактора органа управления из одного положения в другое в направлениях, соответствующих снижению и увеличению мощности, и регулировку счетного канала реактиметра в импульсном режиме путем корректировки уровней дискриминации (второго и третьего) в области перехода реактиметра из токового в импульсный режим и обратно.

К недостаткам описанного способа относятся:

- не обеспечивается точность вычисления реактивности во всем диапазоне импульсного режима работы реактиметра;

- сложность и трудоемкость самой процедуры калибровки.

Недостаточно высокая точность обусловлена нарушением линейности передаточной характеристики импульсного канала реактиметра, подбор (регулировка) уровней дискриминации (второго и третьего) которого производится только в области стыковки токового и импульсного диапазонов (диапазон скорости счета от 1⋅106 имп/с до 2⋅106 имп/с). При таком способе настройки в импульсном режиме в диапазонах скорости счета от 105 до 1⋅106 имп/с и от 2⋅106 до 107 имп/с линейность передаточной характеристики импульсного канала реактиметра не обеспечивается, т.к. при уровне загрузки 105 имп/с появляются наложенные импульсы, доля которых увеличивается с ростом загрузки, что приводит к возникновению просчетов импульсов и, тем самым, существенно снижается точность. По этой причине, в указанных диапазонах, не может быть обеспечена и точность вычисления реактивности. Кроме того, свойственная способу неопределенность выбора уровней дискриминации требует выполнения большого числа итераций по подбору 2-го и 3-го уровней дискриминации с целью получения заданных точностных характеристик линейности измерительного канала. Таким образом, указанный способ предполагает длительный по времени процесс калибровки счетного канала реактиметра, а это, в совокупности с необходимостью использования ядерного реактора в качестве источника нейтронов, делает процедуру калибровки реактиметра весьма трудоемкой и дорогостоящей.

Наиболее близким из известных технических решений, является способ калибровки счетного канала реактиметра [патент RU №2379710, опубл. 20.01.2010], включающий размещение подключенных к счетному каналу реактиметра гамма-детекторов в зоне излучения гамма-источников, поочередную установку первого и второго источника γ-излучения, определение расчетным путем активности каждого источника γ-излучения на момент испытаний, определение показаний калибруемого счетного канала при наличии второго источника γ-излучения и сравнение расчетного значения с показанием калибруемого счетного канала, подбор сочетания величины уровней дискриминации (второго и третьего) калибруемого счетного канала, при котором (сочетании) разность между расчетным значением и показанием калибруемого счетного канала не превышает установленных значений во всем диапазоне импульсного режима измерения (прим. Для реактиметров, как правило, установленное значение величины отклонения от линейности передаточной характеристики в импульсном диапазоне от 0,1 имп/с до 2⋅106 имп/с не должно превышать значение ±10%).

Одним из главных недостатков способа-прототипа так же, как и способа-аналога, является его сложность и связанная с этим длительная по времени процедура калибровки реактиметра, главным образом, обусловленная свойственной способу неопределенностью подбора уровней дискриминации. С этим также связана и его невысокая точность.

Настоящее техническое решение позволяет расширить арсенал способов, предназначенных для калибровки счетного канала реактиметра, и направлено на создание способа, техническим результатом которого при его реализации будет повышение точности калибровки счетного канала в диапазоне от 0,1 до 107 имп/с импульсного режима работы, а также позволяющего упростить процедуру настройки импульсного канала и значительно снизить время проведения его калибровки.

Поставленная задача решается тем, что в способе калибровки счетного канала реактиметра размещают первый источник ионизирующего излучения на заданном расстоянии от детектора и определяют показания калибруемого счетного канала. Далее для второго, третьего и т.д. до n источников при поочередном их размещении на указанном от детектора расстоянии рассчитывают активность каждого из источников на момент испытаний и затем для каждого из них определяют расчетные значения скорости счета по отношению к измеренному значению, полученному для первого источника излучения. После этого последовательно, при наличии второго, третьего и т.д. до n источников определяют показания калибруемого счетного канала и значения активности каждого из упомянутых источников и вычисляют величину относительного отклонения показания калибруемого счетного канала от расчетного значения скорости счета, при этом используют формулу:

где i=1, 2, …, n - номер источника,

ΔNi - величина относительного отклонения показаний калибруемого счетного канала от расчетного значения при установленном i-м источнике, %,

Ni изм - показание калибруемого счетного канала при установленном i-м источнике, имп/с,

Ni расч - расчетное значение скорости счета i-го источника, имп/с.

Далее полученные значения ΔNi аппроксимируют функцией зависимости величины относительных отклонений от показаний калибруемого счетного канала в виде ΔN=ƒΔ(Nизм), которую затем используют для вычисления скорости счета по следующей формуле:

где зависимость Nвых=ƒ(Nизм) является корректировочной характеристикой просчетов импульсов.

Для способа калибровки счетного канала реактиметра возможны дополнительные варианты, в которых:

- расстояние между источником и детектором задают, исходя из условия, что значение показания калибруемого счетного канала при наличии первого источника находится в пределах интенсивности (0,9-1)⋅103 имп/с,

- расчетные значения скорости счета для каждого второго, третьего и т.д. до n источников по отношению к измеренному значению, полученному для первого источника, определяют по формуле:

где Ai - активность i-го источника, причем диапазон расчетных значений скорости счета составляет от (0,9-1)⋅103 до (0,9-1)⋅107 имп/с.

Представленная совокупность признаков обеспечивает достижение технического результата, а именно - позволяет эффективно и с высокой точностью проводить калибровку импульсного канала, существенно упрощает и сокращает по времени процесс калибровки счетного канала реактиметра.

Условия, при которых возможна реализация способа:

- количество источников ионизирующего излучения должно быть не менее двух, максимальное количество источников - не ограничено;

- источники должны размещаться на одинаковом (заданном) расстоянии от детектора;

- для каждого источника определение активности должно проводиться на основе заранее известных (паспортных) данных.

Проверка работоспособности способа проводилась в поле излучений от пяти источников ионизирующего излучения.

Перед использованием первого, второго, третьего, четвертого и пятого источника ионизирующего излучения, производится определение активности каждого из источников с использованием их паспортных данных. Активность Ai каждого источника определяется по формуле:

Ai=Ai(0)⋅2-t/T, где

Ai(0) - активность i-го источника на дату изготовления (t=0), Бк;

t - время распада, лет;

Т - период полураспада, лет.

Устанавливают первый источник ионизирующего излучения с активностью А1 перед детектором. По показаниям N1 изм калибруемой аппаратуры изменяют расстояние между детектором и источником для того, чтобы значение показаний находилось в пределах интенсивности (0,9-1)⋅103 имп/с.

Определяют расчетные значения скорости счета относительно к измеренному значению N1 расч = N1 изм по формуле:

причем диапазон расчетных значений скорости счета должен составлять от (0,9-1)⋅103 до (0,9-1)⋅107 имп/с.

Удаляют первый источник излучения и устанавливают последовательно второй источник с активностью А2, третий с активностью А3, четвертый с активностью А4 и пятый с активностью A5, положение детектора остается прежним. Определяют показания N2 изм, N3 изм, N4 изм, N5 изм калибруемой аппаратуры.

Вычисляют величину относительных отклонений ΔN2…5 показаний калибруемого счетного канала от их расчетных значений:

По полученным данным строят корректировочную характеристику счетного канала и аппроксимируют функцией зависимости величины относительных отклонений от показаний калибруемого счетного канала в виде: ΔN=ƒΔ(Nизм).

Последняя используется для вычисления скорости счета, по формуле (1).

Применение предлагаемого технического решения расширяет арсенал существующих способов калибровки импульсного каналы реактиметра и позволяет выполнять калибровку аппаратуры в диапазоне измерения скорости счета от 0,1 до 107 имп/с, обеспечивая, тем самым, повышение точности калибровки в широком диапазоне измерений, и, кроме того, процедура калибровки импульсного канала реактиметра существенно упрощается и сокращается по времени.

1. Способ калибровки счетного канала реактиметра, заключающийся в том, что размещают первый источник ионизирующего излучения на заданном расстоянии от детектора и определяют показания калибруемого счетного канала, далее для второго, третьего и т.д. до n источников при поочередном их размещении на указанном от детектора расстоянии рассчитывают активность каждого из источников на момент испытаний, затем для каждого из них определяют расчетные значения скорости счета по отношению к измеренному значению, полученному для первого источника излучения, после чего последовательно, при наличии второго, третьего и т.д. до n источников определяют показания калибруемого счетного канала и значения активности каждого из упомянутых источников, затем вычисляют величину относительного отклонения показания калибруемого счетного канала от расчетного значения по формуле:

где i=1, 2, …n - номер источника,

ΔNi - величина относительного отклонения показаний калибруемого счетного канала от расчетного значения при установленном i-м источнике, %,

Ni изм - показание калибруемого счетного канала при установленном i-м источнике, имп/с,

Ni расч - расчетное значение скорости счета i-го источника, имп/с;

полученные значения ΔNi аппроксимируют функцией зависимости величины относительных отклонений от показаний калибруемого счетного канала в виде: ΔN=ƒΔ(Nизм), которую используют для вычисления скорости счета по следующей формуле:

где зависимость Nвых=ƒ(Nизм) является корректировочной характеристикой просчетов импульсов.

2. Способ по п. 1, в котором расстояние между источником и детектором задают, исходя из условия, что значение показания калибруемого счетного канала при наличии первого источника находится в пределах интенсивности (0,9-1)⋅103 имп/с.

3. Способ по п. 1, в котором расчетные значения скорости счета для каждого второго, третьего и т.д. до n источников по отношению к измеренному значению, полученному для первого источника, определяют по формуле:

где Ai - активность i-го источника, причем диапазон расчетных значений скорости счета составляет от (0,9-1)⋅103 до (0,9-1)⋅107 имп/с.



 

Похожие патенты:

Изобретение относится к области радиационного контроля и обеспечения радиационной безопасности объектов использования атомной энергии и может применяться для обнаружения области протечки радионуклидов и оценки ее величины при эксплуатации водо-водяных ядерных реакторов. Техническим результатом изобретения является обеспечение возможности обнаружения области протечки радиоактивного азота в парогенераторах ядерных реакторов КЛТ-40.

Группа изобретений относится к системам визуализации. Система визуализации излучения включает в себя устройство генерирования излучения, выполненное с возможностью генерировать излучение по направлению к объекту, устройство детектирования излучения, выполненное с возможностью детектировать, в виде сигнала изображения, излучение, падающее на него, камеру, выполненную с возможностью записывать видеоизображение, относящееся к обстоятельствам, при которых осуществляется визуализация излучения с использованием излучения в кабинете для визуализации, и устройство управления камерой, выполненное с возможностью управлять камерой.

Изобретение относится к рентгенотехнике и может быть использовано в медицинских рентгеновских установках и томографах с высоким пространственным разрешением, чувствительностью и скоростью сканирования. Технический результат – повышение чувствительности до предельно возможной, устранение паразитного фона рассеянного рентгеновского излучения, повышение разрешающей способности и площади регистрации, увеличение динамического диапазона, повышение ресурса и долговечности работы устройства, снижение дозовой нагрузки на пациента.

Изобретение относится к химической промышленности и может быть использовано при изготовлении устройств для систем безопасности или обнаружения ультрафиолетового и/или рентгеновского излучения, например датчиков, индикаторов или детекторов. Материал характеризуется следующей формулой (I): в которой М' - комбинация по меньшей мере двух моноатомных катионов разных щелочных металлов, выбранных из Li, Na, K и Rb, содержащая 0-98 мол.

Изобретение относится к измерению ядерных излучений. Способ измерения интенсивности радиационного излучения неизвестного состава, при котором радиационное излучение пропускают через как минимум два детектора и систему обработки, при этом детектирование производится во время облучения, при этом сами детекторы имеют чувствительные элементы разного объема; затем, при помощи системы обработки, включающей в себя микроконтроллер, по соотношению скоростей счета в разных детекторах определяют суммарную интенсивность радиационного излучения и соотношение вкладов заряженных и нейтральных компонент в измеряемом радиационном излучении.

Изобретение относится к области техники детектирования ионизирующего излучения. В детекторе массив единичных сцинтилляционных ячеек с лунками для сбора света выполнен в виде монолитного блока.

Изобретение относится к электронным устройствам для считывания данных с датчиков ионизирующих излучений. Устройство для определения координаты ионизирующей частицы в М-канальном полупроводниковом датчике ионизирующего излучения на основе регулярных структур p-n переходов представляет собой набор керамических конденсаторов определенной емкости Cd, соединяющих последовательно несколько каналов полупроводникового многоканального датчика.

Изобретение относится к области пассивной твердотельной дозиметрии смешанных гамма-нейтронных полей. Способ регистрации доз в смешанных гамма-нейтронных полях излучений содержит этапы, на которых сначала детектор облучают эталонными полями гамма-излучения, после чего помещают его в приемную катушку спектрометра ядерного магнитного резонанса (ЯМР), производят измерение в режиме накопления от 1 до 50 спектров в течение 1-5 минут, усредняют эти спектры по усредненным для каждого детектора спектрам, строят градуировочную дозовую зависимость фактора формы спектра от поглощенной дозы гамма-излучения, после чего в приемную катушку спектрометра помещают детектор, облученный смешанным гамма-нейтронным полем, измерения повторяют с этим детектором, определяют фактор формы и наносят его значения на градуировочную дозовую зависимость, по отношению факторов форм, полученных при гамма-нейтронном облучении и известной дозой гамма-облучения, вычисляют их отношение, по полученному коэффициенту определяют суммарную дозу и вклад в нее нейтронной составляющей.

Изобретение относится к области выявления радиационной обстановки. Способ определения безопасного маршрута при преодолении участка холмистой радиоактивно загрязненной местности дополнительно содержит этапы, на которых первоначальный маршрут прокладывают через вершину холма, по маршруту предварительно посылают подвижное средство радиационной разведки, при ведении разведки используют измеритель мощности дозы, обладающий статистической погрешностью измерения не более 1% при доверительной вероятности 0,95, по карте определяют радиус холма R, проводят два измерения мощности дозы на расстоянии 2,5R и 2,6R, на основании полученных результатов вычисляют относительный градиент возрастания мощности дозы гамма-излучения, если полученная величина превышает 0,145/R, то прокладывают новый маршрут в обход холма на расстоянии двух его радиусов R.

Изобретение относится к области измерения энергетических спектров. Сущность изобретения заключается в том, что способ восстановления спектральных распределений тормозного излучения по профилю полей вторичного излучения дополнительно содержит этапы, на которых осуществляют облучение протяженного вдоль направления первичного пучка излучения цилиндрического рассеивающего тела, регистрируют распределение фотонов вторичного излучения вдоль образующей рассеивающего тела позиционно-чувствительным детектором и по форме полученного распределения восстанавливают спектральный состав первичного пучка излучения.

Изобретение относится к химической промышленности и может быть использовано при изготовлении сцинтилляторов для обнаружения излучения в системах компьютерной томографии (КТ), позитронно-эмиссионной томографии (ПЭТ), однофотонной эмиссионной компьютерной томографии (ОФЭМТ). Сначала формируют порошок пламенно-аэрозольным пиролизом жидких предшественников; синтезом в процессе горения; обработкой для получения частиц с размером менее 500 мкм, например, размалыванием; осаждением частиц из жидких растворов путем изменения рН или синтезом на основе золегелевой технологии. Указанный порошок содержит композицию с формулой: (Gd3-a-cYa)x(Ga5-bAlb)yO12Dc, где D – легирующая добавка, выбранная из Са2+, Се3+, Се4+, Mg2+, Nb5+, Pr3+, Sn2+, Sr2+, Ta5+, Tl+, Zr4+ и их комбинаций; а от 0,5 до около 1,5; b от 2,5 до 2,8; х и у от 2,97 до 3,03; с от 0,003 до 0,3. Полученный порошок объединяют для формирования оптически прозрачной керамики с применением температуры, окружающей атмосферы или давления, чтобы уменьшить связанные с кислородом и/или термодинамически обратимые дефекты в керамике. В частности, можно спекать порошок в содержащей кислород атмосфере при 1200-1700°С, например на воздухе; или прессовать его в заготовку с последующим кальцинирующим обжигом при 500-1500°С. Содержание Се4+ в оптически прозрачной керамике от 0 до 50 %. Полученную оптически прозрачную керамику отжигают в содержащей кислород атмосфере при 1000-1900°С. Оптически прозрачная керамика характеризуется временем нарастания менее или равным 2 нс и/или временным разрешением менее или равным около 350 пс. Система обнаружения излучения содержит оптически прозрачный керамический сцинтиллятор, полученный из указанной керамики, имеющий поликристаллическую структуру, а также фотодетектор, содержащий фотоумножитель, например, кремниевый, для обнаружения световых импульсов от оптически прозрачного керамического сцинтиллятора. Изобретение позволяет повысить прозрачность керамики за счёт уменьшения в ней указанных дефектов и отсутствия остаточной пористости. 3 н. и 23 з.п. ф-лы, 5 ил., 2 табл.
Наверх