Устройство для преобразования тепловой энергии в механическую и электрическую энергию

Изобретение относится к устройствам для преобразования энергии и может быть использовано в энергетике и на транспорте. Устройство для преобразования тепловой энергии в механическую и электрическую энергию включает разделенный на две части цилиндр 1, расположенную в его нижней части теплообменную камеру 3 с установленной в ней S-образной пластиной 4 из материала, обладающего эффектом памяти формы, шток 5 с поршнем 8, расположенный в верхней части цилиндра 1, заполненной рабочей жидкостью, и соединенной трубопроводом 11 с гидродвигателем 12. Трубопровод 11 соединен с заполненной ферромагнитной жидкостью энергообразующей магистралью 15, содержащей эластичные диафрагмы 14, 16 и в средней части выполненной в виде цилиндра 17 из немагнитного материала, вокруг которого установлена обмотка 18 электрического генератора, концентрично которой размещен кольцевой постоянный магнит 19. Изобретение направлено на расширение функциональных возможностей устройства, которое имеет малые износы, высокий срок службы, упрощенную конструкцию. 1 ил.

 

Изобретение относится к устройствам для преобразования энергии и может быть использовано в энергетике и на транспорте.

Известно устройство для преобразования тепловой энергии в механическую, содержащее ряд последовательно установленных теплообмеников, рабочие элементы в которых имеют коэффициент линейного расширения больше предыдущего (Патент РФ №2052661, МПК F03G 7/06, опубл. 20.01.1996).

Недостатком устройства является малый КПД, сложность конструкции и невозможность выработки с помощью этого устройства электрической энергии.

Наиболее близким техническим решением является устройство для преобразования тепловой энергии в механическую энергию, содержащее теплообменную камеру с установленными в ней рабочими элементами, обладающими свойствами расширения при нагревании, гидроаккумулятор, гидродвигатель, электрический генератор, электродвигатель, камеру очистки выхлопных газов, соединенную с теплообменной камерой трубопроводами, узел поочередной подачи нагретых газов и атмосферного воздуха, при этом в качестве рабочего элемента используется помещенная в нижней части цилиндра S-образная пластина из материала, обладающего эффектом памяти формы, передающая давление при изменении температуры через шток на уплотненный поршень, расположенный в верхней части цилиндра, производящий давление на расположенную над ним рабочую жидкость, направляемую в трубопровод, в верхней части цилиндра установлен обратный клапан для возврата рабочей жидкости из обратного трубопровода (Патент РФ №2360144, МПК F03G 7/06. опубл. 2009).

Недостатком данного устройства является сложность конструкции и невозможность выработки с его помощью электрической энергии.

Технической проблемой является расширение функциональных возможностей, упрощение конструкции и повышение КПД устройства для преобразования тепловой энергии в механическую и электрическую энергию.

Техническая проблема достигается тем, что в устройстве для преобразования тепловой энергии в механическую и электрическую энергию, включающем разделенный на две части цилиндр, расположенную в его нижней части теплообменную камеру с установленной в ней S-образной пластиной из материала, обладающего эффектом памяти формы, и шток с поршнем, расположенный в верхней части цилиндра, заполненной рабочей жидкостью, и соединенной трубопроводом с гидродвигателем, а также электрический генератор, трубопровод соединен с заполненной ферромагнитной жидкостью энергообразующей магистралью, содержащей эластичные диафрагмы и в средней части выполненной в виде цилиндра из немагнитного материала, вокруг которого установлена обмотка электрического генератора, концентрично которой размещен кольцевой постоянный магнит.

Технический результат заключается в расширении функциональных возможностей, то есть обеспечении не только выработки механической энергии, но и генерирования электрической энергии, которое осуществляется без использования механически движущихся элементов, вследствие чего устройство имеет малые износы и высокий срок службы, а его конструкция значительно упрощается, вследствие сокращения числа механически движущихся элементов.

Сущность изобретения поясняется чертежом, на котором показана схема устройства для преобразования тепловой энергии в механическую и электрическую энергию.

Устройство для преобразования тепловой энергии в механическую и электрическую энергию содержит цилиндр 1, разделенный перегородкой 2 на две части. В нижней части цилиндра 1 расположена теплообменная камера 3 с установленной в ней S-образной пластиной 4, изготовленной из материала, обладающего эффектом памяти формы, расширяющейся при нагревании горячими газами и возвращающейся в первоначальное положение при охлаждении атмосферным воздухом (Применение эффекта памяти формы в современном машиностроении / А.С Тихонов, А.П. Герасимов, И.И. Прохорова. - М.: Машиностроение, 1981. - 80 с.). S-образная пластина прикреплена одним концом к днищу рабочего цилиндра 1, а другим концом - к штоку5. Для осуществления впуска и выпуска горячих газов или атмосферного воздуха в теплообменную камеру 3 в нижней части цилиндра 1 установлены впускной клапан 6 и выпускной клапан 7.

Верхний конец штока 5 прикреплен к поршню 8. Над поршнем 8 в верхней части цилиндра 1 находится рабочая жидкость 9. Цилиндр 1 через клапан 10 связан с трубопроводом 11, в котором установлен гидродвигатель 12, и который связан с полостью 13, ограниченной расширяющейся частью трубопровода 11 и нижней диафрагмой 14 энергообразущей магистрали 15. Энергообразующая магистраль 15 ограничена верхней 16 и нижней 14 эластичными диафрагмами и в своей средней части выполнена в виде цилиндра 17, вокруг которого установлена обмотка 18 электрического генератора. Концентрично обмотке 18 размещен кольцевой постоянный магнит 19. Энергообразующая магистраль 15 заполнена ферромагнитной жидкостью 20.

Устройство работает следующим образом.

Горячие газы (от транспортных и стационарных устройств - автомобилей, котельных, технологических процессов промышленных предприятий, газовых факелов на углеводородных месторождениях) и атмосферный воздух через впускной клапан 6 поочередно подаются в теплообменную камеру 3 и удаляются из нее через выпускной клапан 7.

При подаче горячих газов в теплообменную камеру 3 в S-образной пластине 4, вследствие нагрева, происходит мартенситное превращение, она выпрямляется, передавая возникающее при этом усилие через шток 5, перемещающийся в перегородке 2, на поршень 8. Поршень 8 при движении к верхней мертвой точке давит на рабочую жидкость 9, которая через клапан 10 вытесняется в трубопровод 11. Рабочая жидкость 9, движущаяся в трубопроводе 11, поступает в гидродвигатель 12, вырабатывающий механическую энергию.

Пройдя через гидродвигатель 12, рабочая жидкость 9 движется дальше по трубопроводу 11 в полость 13, где производит давление на нижнюю эластичную диафрагму 14 энергообразующей магистрали 15. Нижняя эластичная диафрагма 14, вследствие этого давления, прогибается вверх и перемещает ферромагнитную жидкость 20, которой заполнена энергообразующая магистраль 15. Вследствие перемещения ферромагнитной жидкости 20 прогибается вверх и верхняя эластичная диафрагма 16.

Перемещение ферромагнитной жидкости 20 в магнитном поле кольцевого постоянного магнита 19 создает ЭДС в обмотке 18 электрического генератора (на чертеже магнитные силовые линии изображены пунктиром). Выработанная электрическая энергия подается в электросеть.

После подачи в теплообменную камеру 3 атмосферного воздуха S-образная пластина 4 охлаждается, в результате чего в ней вновь происходит мартенситное превращение, она искривляется, уменьшая свою длину и перемещая шток 5 вниз вместе с поршнем 8. При этом происходит возврат рабочей жидкости 9 в верхнюю часть цилиндра 1. Движущаяся через гидродвигатель 12 рабочая жидкость 9 вновь совершает механическую работу. Одновременно с этим в результате перемещения рабочей жидкости 9 в верхнюю часть цилиндра 1 нижняя эластичная диафрагма 14 энергообразующей магистрали 15 прогибается в противоположную сторону (вниз) и перемещает ферромагнитную жидкость 20, которой заполнена энергообразующая магистраль 15. Вследствие перемещения ферромагнитной жидкости 20 вновь создается ЭДС в обмотке 18 электрического генератора и прогибается вниз верхняя эластичная диафрагма 16.

Далее цикл работы устройства повторяется.

Устройство для преобразования тепловой энергии в механическую и электрическую энергию, включающее разделенный на две части цилиндр, расположенную в его нижней части теплообменную камеру с установленной в ней S-образной пластиной из материала, обладающего эффектом памяти формы, и шток с поршнем, расположенный в верхней части цилиндра, заполненной рабочей жидкостью, и соединенной трубопроводом с гидродвигателем, а также электрический генератор, отличающееся тем, что трубопровод соединен с заполненной ферромагнитной жидкостью энергообразующей магистралью, содержащей эластичные диафрагмы и в средней части выполненной в виде цилиндра из немагнитного материала, вокруг которого установлена обмотка электрического генератора, концентрично которой размещен кольцевой постоянный магнит.



 

Похожие патенты:

Изобретение относится к исполнительному устройству, имеющему управляемую жесткость. Исполнительный элемент (12) устройства содержит материал (16) на основе электроактивного полимера, имеющий светопоглощающие наполнительные элементы (20), встроенные в него.

Изобретение относится к области фоточувствительных устройств-актюаторов, которые способны превращать свет в механическое воздействие, и касается актюаторного устройства, способа актюации и его изготовления. Устройство содержит стопу, сформированную из множества фоточувствительных слоев, которые деформируются в качестве реакции на свет и которые разделены соответствующими деформируемыми нефоточувствительными слоями.

Изобретение относится к области теплоэнергетики, а именно к нетрадиционным преобразователям тепловой энергии в механическую работу. Судовой двигатель состоит из теплочувствительного элемента (ТЧЭ) в форме тонкостенной трубы, являющейся рабочим валом с подшипниковыми узлами и мультипликатором.

Изобретение относится к устройствам преобразования тепловой энергии в механическую с использованием разности температур жидкости и окружающей среды и может найти применение для охлаждения жидкостей с получением полезной работы, электроэнергии и в качестве привода различных механизмов и устройств. В преобразователе, содержащем трансмиссию с осями вращения на опорных блоках, на которой размещены теплообменные камеры переменного объема, частично заполнены легкокипящей жидкостью, а часть трансмиссии погружена в нагретую воду, при этом камеры переменного объема закреплены на трубчатых подвесах на трансмиссии с возможностью перемещений в вертикальной плоскости, выполняющих функции рычагов, и снабжены корректорами движения камер в процессе работы преобразователя.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтяной залежи и работе системы поддержания пластового давления. Устройство для регулируемой закачки жидкости в пласт включает трубопровод, сообщенный с нагнетательной скважиной, с регулирующим механизмом, датчиком давления, функционально связанным с блоком управления для изменения суммарного гидроспротивления в регулирующих механизмах.

В термочувствительном исполнительном устройстве использован слой материала с эффектом памяти, который термически стимулируется для изменения формы в ответ на повышение температуры от первой формы при первой температуре до второй формы при второй температуре. Многослойный пакет связан со слоем материала с эффектом памяти формы, и он может принимать первую форму при первой температуре.

Изобретение относится к области теплоэнергетики, в частности к нетрадиционным преобразователям тепловой энергии в механическую работу, и может быть применено в приводах электрических агрегатов, насосно-компрессорного и другого оборудования промышленного, сельскохозяйственного и иного назначения. Тепловой твердотельный двигатель содержит зоны нагрева и охлаждения, установленный в подшипниках вал, теплочувствительные элементы (ТЧЭ), контактирующий с ними опорный фланец, связанный через подшипник с наклонным фланцем вала, а также связанный с валом золотник, управляющий потоками нагревательного и охлаждающего теплоносителей, поступающими к ТЧЭ.

Изобретение относится к области энергетики. Горная автономная воздушно-тяговая установка, содержащая воздуховод, представляющий собой последовательно соединенные сегменты из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, при этом нижняя часть воздуховода помещена в геотермальную емкость, а входное отверстие воздуховода расположено вне геотермальной емкости, причем побудитель воздуха установлен в верхней части воздуховода и выполнен в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра.

Теплочувствительный исполнительный механизм использует двухслойную структуру материала с памятью формы, при этом каждый слой термостимулируется для изменения формы при разной температуре, для создания функциональности двунаправленного приведения в действие. Второй слой - с более высокой температурой изменения фазы - приводит к большему присущему усилию в его фазе высокой температуры, чем первый, и, таким образом, может использоваться для восстановления исполнительного механизма в его первоначальную форму после деформации первым слоем при более низкой температуре.

Группа изобретений относится к генерирующему тягу устройству, использующему силу Магнуса. Устройство по типу эффекта Магнуса содержит первый элемент 1, имеющий первую ось вращения С1 в качестве вертикальной оси и вращающийся вокруг неё, и второй элемент 4, расположенный со стороны задней поверхности относительно направления движения элемента 1.

Изобретение относится к области фоточувствительных устройств-актюаторов, которые способны превращать свет в механическое воздействие, и касается актюаторного устройства, способа актюации и его изготовления. Устройство содержит стопу, сформированную из множества фоточувствительных слоев, которые деформируются в качестве реакции на свет и которые разделены соответствующими деформируемыми нефоточувствительными слоями.
Наверх