Горная автономная воздушно-тяговая установка



Горная автономная воздушно-тяговая установка
Горная автономная воздушно-тяговая установка
Горная автономная воздушно-тяговая установка
Горная автономная воздушно-тяговая установка
Горная автономная воздушно-тяговая установка
F24T50/00 - Отопление; вентиляция; печи и плиты (тепловая защита растений в садах или лесах A01G 13/06; хлебопекарные печи и устройства A21B; устройства для варки вообще, за исключением кухонных плит A47J; ковка B21J, B21K; отопительные и вентиляционные устройства для транспортных средств, см. соответствующие подклассы классов B60-B64; устройства для зажигания топлива вообще F23; сушка F26B; промышленные печи вообще F27; электронагревательные элементы и устройства H05B)

Владельцы патента RU 2692887:

Миронюк Тарас Витальевич (RU)

Изобретение относится к области энергетики. Горная автономная воздушно-тяговая установка, содержащая воздуховод, представляющий собой последовательно соединенные сегменты из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, при этом нижняя часть воздуховода помещена в геотермальную емкость, а входное отверстие воздуховода расположено вне геотермальной емкости, причем побудитель воздуха установлен в верхней части воздуховода и выполнен в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра. Изобретение направлено на увеличение мощности установки. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к энергетике и может быть использовано для выработки электроэнергии без использования топлива и подвода энергии извне, являясь альтернативным источником энергии.

Известна горная воздушно-тяговая электростанция, содержащая вертикальный воздуховод, установленный в нем воздушный двигатель, кинематически соединенный с электрогенератором. Воздуховод выполнен в виде горной выработки, изолированной от поступления в нее подземных вод, устье которой является коллектор, представленный сухими теплыми (или горячими) породами, характеризующиеся вызванной или природной сообщенной трещиноватостью, сообщенный со входом горной выработки. Каналом сообщения входа воздуховода с атмосферой является сам геотермальный коллектор, простирающийся до пересечения с поверхностью рельефа горной местности, либо одна дополнительная горная выработка или несколько дополнительных горных выработок, сооруженных с дневной поверхности до геотермального коллектора и расположенных вокруг горной выработки. Электростанция снабжена побудителем движения воздуха, вентилятором в горной выработке (см. патент РФ №2444645, МПК F03D 3/04, 2009 г.). Эта электростанция выбрана в качестве прототипа.

Наличие побудителя воздуха в горной выработке, который необходимо дополнительно снабжать электроэнергией, является недостатком прототипа. Также к недостаткам можно отнести тот факт, что в качестве воздуховода применяется горная выработка, которая имеет шероховатую, не гладкую поверхность, трение воздушного потока о которую будет создавать дополнительные потери мощности. Также значительная скорость воздушного потока будет вызывать разрушение воздуховода, который состоит из горной породы и, соответственно, с течением времени будет разрушаться, а выносимая горная пыль будет забивать турбину, находящуюся в верхней части трубы, что будет вызывать дополнительные эксплуатационные затраты. Укрепление же горной выработки не представляется возможным при такой ее длине и сложной конфигурации, при том что с укреплением сразу же возникнет проблема с техническим обслуживанием укрепленной выработки, поддержанием ее в исправном состоянии, прокладка же внутри горной выработки трубы «убивает» все преимущества данного изобретения, так как это несет за собой дополнительные финансовые затраты. Также возникают проблемы с изоляцией воздуховода от подземных вод, что несет за собой очередные вложения. К тому же, мощность электростанции будет снижаться за счет остывания горячего воздуха при контакте с холодными стенками воздуховода, хотя в изобретении и предлагается теплоизолировать стенки горных выработок, но не говорится каким способом, остается лишь догадываться, каких финансовых вложений это потребует при заданной длине и конфигурации воздуховода. Подводя итог всему вышесказанному, возникает вопрос о целесообразности такого выбора воздуховода, мнимости экономии на его строительстве, если вместе с этой «экономией» возникает целый ряд вопросов и дополнительных затрат.

Технической задачей настоящего изобретения является устранение отмеченных недостатков в разработанной конструкции горной воздушно-тяговой электростанции, повышение ее эффективности и снижении эксплуатационных затрат и затрат на строительство.

Решение данной технической задачи достигается тем, что горная автономная воздушно-тяговая установка содержит воздуховод в виде трубы, проложенной вдоль склона горы, и установленный в ней воздушный двигатель, кинематически связанный с электрогенератором, и побудитель воздуха, согласно изобретению, воздуховод представляет собой последовательно соединенные сегменты из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, при этом нижняя часть воздуховода помещена в геотермальную емкость, а входное отверстие воздуховода расположено вне геотермальной емкости, причем побудитель воздуха установлен в верхней части воздуховода и выполнен в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра.

Создание воздуховода из последовательно соединенных сегментов из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, с размещением нижней части воздуховода в геотермальной емкости, с расположением входного отверстия воздуховода вне геотермальной емкости, и установкой побудителя воздуха в верхней части воздуховода с выполнением его в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра - составляют новизну данного технического решения.

В дальнейшем изобретение поясняется примером его конкретного выполнения со ссылками на прилагаемые чертежи (фиг. 1 - фиг. 4):

фиг. 1 изображает схему горной автономной воздушно-тяговой установки с горизонтальным забором воздуха (поперечное сечение, вид сбоку);

фиг. 2 изображает схематичный вид сверху под 45 градусов на горную автономную воздушно-тяговую установку, имеющую с воздуховодом соединенные дополнительные воздуховоды, сходящиеся в верхней части в один единый;

фиг. 3 изображает горную автономную воздушно-тяговую установку с вертикальным забором воздуха и имеющую в месте забора воздуха систему зеркал;

фиг. 4 изображает то же, что и на фиг. 3, но ее схематичный вид сверху на место забора воздуха с системой зеркал.

Горная автономная воздушно-тяговая установка (фиг. 1) состоит из гористой местности 1, на которую уложены через подставки 2 сегменты трубы воздуховода 3, скрепленные посредством соединения 4 и образующие единую труб, нижнее основание которой помещено в геотермальную емкость 5, в которую через впускную трубу 6 поступает горячая вода из геотермального источника 7 и вытекает из выпускной трубы 8, к воздуховоду посредством механического соединения 9 присоединяется турбина 10, кинематически соединенная с электрогенератором 11, выход которого соединен посредством кабеля 12 с преобразователем электрической энергии 13, соединенный с распределительным устройством 14, в трубе также установлен шибер 15, в верхней части воздуховода установлен нагнетатель воздуха 16, который посредством потока ветра 17 создает разряжение воздуха и формирует поток воздуха 18, поступающего в воздуховод.

На фиг. 2 изображен схематичный вид сверху под 45 градусов на горную автономную воздушно-тяговую установку по фиг. 1, отличающуюся тем, что с воздуховодом 18 соединенные дополнительные воздуховоды 19, 20, сходящиеся в верхней части в один единый.

Фиг. 3 изображает горную автономную воздушно-тяговую установку по фиг. 1, отличающуюся тем, что осуществляется вертикальный забор воздуха и на место забора воздуха 21 через систему зеркал 22, расположенной вокруг воздуховода под некоторым углом α, отражается солнечный луч 23 от солнца 24.

На фиг. 4 изображено то же, что и на фиг. 3, но ее схематичный вид сверху на место забора воздуха 21 с системой зеркал, состоящей из зеркальных сегментов 25.

Рассмотрим работу данной горной автономной воздушно-тяговой установки (ГАВ-ТУ).

Горная автономная воздушно-тяговая установка по фиг. 1. В гористой местности 1 сооружена труба, проложенная вдоль склона горы. Труба из себя представляет отдельные сегменты из труб 3, скрепленные между собой соединениями 4 таким образом, чтобы диаметр труб с каждым соединением постепенно уменьшался от максимального (в месте забора воздуха) до минимального (в месте установки турбины в самой верхней точке). Данное техническое решение позволяет получить монолитную трубу с постепенно уменьшающимся диаметром с минимальными затратами, изготовление же цельной трубы необходимой длины и нужной формы не представляется возможным. Постепенно уменьшающийся диаметр труб позволяет увеличить скорость движения воздуха в верхней части трубы (по закону Бернулли), соответственно, увеличить мощность установки. Еще одним плюсом такого соединения является то, что появляется возможность максимально точно повторить рельеф горы, не прибегая к сгибам труб, что достаточно проблематично. В том числе, если возникают какие-либо механические повреждения труб, то необходимо лишь заменить отдельный сегмент трубы, а не весь трубопровод целиком. Укладка трубы вдоль склона осуществляется на специальные подставки 2, которые позволяют вынести трубу на некоторое расстояние от поверхности земли и снизить нежелательное воздействие на нее осадков. Известно, что температура геотермальных вод постоянна круглый год и колеблется, в зависимости от источника, от 20 до 90 градусов, поэтому целесообразно соорудить специальную геотермальную водяную емкость 5, в которую будет поступать через впускную трубу 6 горячая вода 7 из геотермального источника и вытекать из нижнего ее основания через выпускную трубу 8, тем самым осуществляя циркуляцию воды в емкости. В емкость же помещена нижняя часть воздуховода, которая, нагреваясь от геотермальной воды, будет передавать тепло через стенки трубы, проходящему в ней воздуху 18, поступающего в воздуховод в нижнем его основании. Очевидно, что нагрев воздуха вызовет дополнительную разницу плотностей воздуха у основания горы и в самой верхней ее части. Таким образом, возникнет поток воздуха из области с большей его плотностью в область с меньшей плотностью: от основания воздуховода к его устью, а через него - в атмосферу, снизу вверх. В устье воздуховода установлено механическое соединение 9. Посредством механического соединения 9 к трубе присоединяется турбина 10, кинематически соединенная с электрогенератором 11, выход которого соединен посредством кабеля 12 с преобразователем электрической энергии 13, где электроэнергия преобразуется до требуемого (по показателям качества) уровня электроэнергии. От преобразователя энергия попадает на распределительное устройство 14 и передается дальше потребителям. В трубе также установлен шибер 15, который позволяет остановить ГАВ-ТУ посредством перекрытия сечения воздуховода. В самой верхней части трубы установлен нагнетатель воздуха 16, состоящий из лопастей, которые крутятся посредством проходящего потока ветра 17, тем самым выполняются функции побудителя воздуха, который создает первичный воздушный поток (для запуска установки) и в дальнейшем продолжает его поддерживать и усиливать.

Горная автономная воздушно-тяговая установка по фиг. 2. Устройство ГАВ-ТУ по фиг. 2 аналогично описанному выше устройству ГАВ-ТУ по фиг. 1 за исключением следующего отличия: с воздуховодом 18 соединены дополнительные воздуховоды 19, 20, сходящиеся в верхней части в один единый воздуховод и имеющие в своих нижних частях нагреватели в виде геотермальных емкостей 5. Таким образом, появляется возможность увеличить мощность установки за счет увлечения скорости потока воздуха в месте установки турбины 10.

Горная автономная воздушно-тяговая установка по фиг. 3 и 4. Преимущественно она отличается от ГАВ-ТУ по фиг. 1 тем, что забор воздуха в воздуховод происходит не горизонтально, а вертикально, тем самым появляется возможность установить на геотермальную емкость 5 систему зеркал 22, расположенную вокруг воздуховода под некоторым углом α таким образом, чтобы направить падающий солнечный луч 23 в сторону места забора воздуха 21 и тем самым дополнительно нагреть его и создать дополнительную разницу температур. На фиг. 4 показан схематичный рисунок сверху на место забора воздуховода 21, где установлена система зеркал, состоящая из зеркальных сегментов 25, расположенных по углом α от поверхности земли.

По сравнению с прототипом, заявляемая горная автономная воздушно-тяговая установка лишена отмеченных недостатков, она обладает повышенной эффективностью и характеризуется более низкими эксплуатационными и строительными затратами.

1. Горная автономная воздушно-тяговая установка, содержащая воздуховод в виде трубы, проложенной вдоль склона горы, и установленный в ней воздушный двигатель, кинематически связанный с электрогенератором, и побудитель воздуха, отличающаяся тем, что труба воздуховода представляет собой последовательно соединенные сегменты из труб разного диаметра, таким образом, что диаметр труб с каждым соединением постепенно уменьшается от максимального в месте забора воздуха до минимального в месте установки воздушного двигателя, при этом нижняя часть воздуховода помещена в геотермальную емкость, а входное отверстие воздуховода расположено вне геотермальной емкости, причем побудитель воздуха установлен в верхней части воздуховода и выполнен в виде нагнетателя воздуха, состоящего из лопастей, приводимых в движение потоком ветра.

2. Горная автономная воздушно-тяговая установка по п.1, отличающаяся тем, что с воздуховодом соединены дополнительные воздуховоды, сходящиеся в верхней части в один единый воздуховод и имеющие в своих нижних частях нагреватели в виде геотермальных емкостей;

3. Горная автономная воздушно-тяговая установка по п.1 или 2, отличающаяся тем, что у подножия горы, в месте забора воздуха в воздуховод, расположена система зеркал.



 

Похожие патенты:

Группа изобретений относится к солнечным коллекторам и способам их изготовления. Корпус (1) для системы концентрации солнечной энергии содержит трубу (2), выполненную с возможностью содержания теплопередающей среды (10) и содержащую первую часть, выполненную с возможностью быть подверженной воздействию солнечного света, и вторую часть, выполненную с возможностью не быть подверженной воздействию солнечного света.

Изобретение относится к солнечной энергетике. Изобретение представляет собой гелиоэнергетическую систему, включающую не менее чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами либо солнечными батареями на плоских держателях, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, причем солнечные отражатели либо солнечные батареи на плоских держателях выполнены гибкими в виде продольно расположенных относительно держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент.

Изобретение относится к испарителю для получения пара с помощью магмы вулкана и способу его работы. Испаритель содержит корпус, воронку для отвода осадка, снабженную системой датчиков уровня наполнения, канал подачи воды, канал отвода пара, при этом нижняя часть корпуса, воронка и часть канала подачи воды перед входом в корпус выполнены с возможностью электрического подогрева.

Изобретение относится к гелиотехнике. Концентратор солнечного излучения выполнен в виде тела вращения, внутренняя поверхность которого является отражающей поверхностью, и расположенного под ним приемника излучения.

В предложенной теплогенерирующей системе (1) осуществляется управление избыточной теплоотдачей для увеличения числа мест протекания реакции тепловыделения в ячейках (16) теплогенерирующих элементов, которые генерируют избыточное тепло с помощью реакции тепловыделения, из числа множества ячеек (16) теплогенерирующих элементов, и в результате этого, даже если множество ячеек (16) теплогенерирующих элементов включает ячейку (16) теплогенерирующего элемента, которая не генерирует избыточное тепло вследствие недостаточной реакции тепловыделения, соответствующее количество тепла может быть рекуперировано на выходе путем выполнения компенсации с использованием другой ячейки (16) теплогенерирующего элемента, в которой реакция тепловыделения определенно протекает.

Изобретение относится к солнечной энергетике, в частности к солнечным коллекторам, и предназначено для преобразования солнечной энергии в тепловую в системах отопления и горячего водоснабжения как для бытовых потребителей, так и для сельскохозяйственных объектов.

Изобретение относится к способам использования извлеченного геотермального тепла для охлаждения грунтов вокруг тоннелей метрополитена и трансформирования его для нагрева воды в системе горячего водоснабжения.

Изобретение относится к гелиотехнике и предназначено для круглосуточного нагрева воздуха до заданной температуры солнечной энергией с целью использования его в бытовых условиях, например в сушильных установках или для обогрева помещений.

Изобретение относится к гелиотехнике и предназначено для нагревания воды за счет преобразования солнечной энергии в тепловую и может быть использовано в биотехнологической, пищевой, сельскохозяйственной и других отраслях промышленности, а также в быту.

Солнечное оптоволоконное осветительное устройство содержит концентратор, оптоволоконный жгут, рассеивающую линзу. Концентратор выполнен неподвижным с оптическим способом наведения светового потока на вход оптоволоконного жгута и содержит цилиндрическую сужающую линзу Френеля на внутренней поверхности прозрачного куполообразного корпуса, в фокусе которой расположен второй прозрачный купол с цилиндрической расширяющей линзой Френеля, на третьем внутреннем прозрачном куполе имеются несимметричные цилиндрические полосковые линзы Френеля, плоскость фокусировки которых перпендикулярна плоскости фокусировки двух предыдущих линз.

Теплочувствительный исполнительный механизм использует двухслойную структуру материала с памятью формы, при этом каждый слой термостимулируется для изменения формы при разной температуре, для создания функциональности двунаправленного приведения в действие.

Группа изобретений относится к генерирующему тягу устройству, использующему силу Магнуса. Устройство по типу эффекта Магнуса содержит первый элемент 1, имеющий первую ось вращения С1 в качестве вертикальной оси и вращающийся вокруг неё, и второй элемент 4, расположенный со стороны задней поверхности относительно направления движения элемента 1.

Использование: в области электротехники. Технический результат – обеспечение энергией аккумулятора гибкого подъемного сосуда при работе гибкого подъемного сосуда, обеспечивая решение вопросов безопасности, связанных с необходимой периодической заменой и зарядкой аккумулятора гибкого подъемного сосуда.

Предложенная система для нагревания исполнительного устройства из сплава с памятью формы может содержать исполнительное устройство SMA, интеллектуальный токоприемник, множество индукционных обмоток и модуль управления.

Группа изобретений относится к двигательным и энергосистемам транспортных средств (объектов), перемещающихся в любых средах, в т.ч. в воздушно-космическом пространстве.

Изобретение относится к области энергетики и может быть использовано для преобразования энергии электромагнитных волн в полезную энергию (механическую или гидравлическую).

Изобретение относится к области малой энергетики, в частности к электрическим станциям. Электрическая станция, состоящая из пневматической системы двойного действия, при которой рабочий процесс совершается нагрузкой, обеспечивающей движения рабочего тела из воздушной камеры, а при снятии нагрузки рабочий процесс обеспечивает движение потока воздуха из атмосферы в воздушную камеру, содержит рабочий орган.

Суть изобретения аналогична с функцией ГАЭС и предназначена для аккумулирования энергии альтернативных источников, а также энергии от недогруженных генерирующих мощностей, для покрытия пиковых нагрузок в электросетях и поддержки сетей от ВЭУ при недостатке или отсутствии их мощностей.

Группа изобретений относится к транспортным средствам, а именно к движителям. Движитель содержит платформу, взаимодействующую с опорной поверхностью, расположенную на ней раму, в раме установлен вал с колесом, рычагом его поворота и наружным валом, связанным с грузами и приводом вращения.

Изобретение относится к металлургии, а именно к пружинам из никелида титана, и может быть использовано для управления деформационными свойствами обратимого формоизменения, такими как угловое (поворотное) и осевое (поступательное) перемещение витой пружины.

Изобретение относится к области электротехники и энергетики. Устройство автономного электропитания содержит ветрогенератор, преобразователь солнечной энергии в электрическую, блок заряда аккумуляторных батарей, аккумуляторные батареи, выходы которых присоединены через инвертор напряжения и распределительное устройство к нагрузке, и узел управления, при этом дополнительно введены блок заряда суперконденсаторов и блок суперконденсаторов, при этом блок заряда суперконденсаторов подключен входом параллельно блоку заряда аккумуляторных батарей к ветрогенератору и преобразователю солнечной энергии в электрическую, а выходом соединен с входом блока суперконденсаторов, выход которого соединен с входом блока заряда аккумуляторных батарей.
Наверх