Датчик турбулентности компрессора турбомашины

Согласно настоящему изобретению предложена система измерения турбулентности потока (18) турбомашины, в частности компрессора турбомашины. Система (30) содержит: первый приемный элемент (47) с первым датчиком (52) давления и первым отверстием (48); второй приемный элемент (54) со вторым датчиком (58) давления и вторым отверстием (56), выполненным под наклоном относительно первого отверстия (48); и датчик (53) температуры. Система (30) предназначена для вычисления по меньшей мере двух компонентов направления скорости потока на основании данных от датчиков (52; 58) давления и датчика (53) температуры. Отверстия выполнены в хвостовике лопатки, на передней кромке на уровне внутренней оболочки. 3 н. и 16 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к области анализа работы компрессора турбомашины. В частности, настоящее изобретение касается датчика измерения турбулентности с несколькими отдельными отверстиями. Настоящее изобретение также относится к осевой турбомашине, в частности к турбореактивному двигателю воздушного судна или турбовинтовому двигателю воздушного судна.

Уровень техники

В турбореактивном двигателе уровень турбулентности на входе в компрессор влияет на стабильность работы последнего. Более того, работа вентилятора создает и усиливает турбулентность на входе в компрессор. В частности, прохождение лопаток вентилятора делает неламинарными потоки на входе в компрессор. Следовательно, возможность измерения такой турбулентности позволяет оценить пределы безопасной работы компрессора и, следовательно, предвидеть критические ситуации.

В документе US2004159103 A1 описана система для определения нестабильности в компрессоре турбореактивного двигателя. Система содержит преобразователь давления с расположенным на пути потока отверстием для измерения общего давления и по меньшей мере с четырьмя отверстиями для измерения статического давления. Более того, эти четыре отверстия сообщаются с одной общей линией. Кроме того, они расположены вокруг полой трубчатой части, на стороне выше по потоку. Тем не менее применимость рассмотренной выше системы остается ограниченной в отношении компрессора.

Сущность изобретения

Техническая задача

Целью настоящего изобретения является решение по меньшей мере одной из проблем аналогов, известных из уровня техники. В частности, целью настоящего изобретения является улучшение управления стабильной работой компрессора. Также целью настоящего изобретения является обеспечение конструкции, которая является простой, прочной, легкой, экономичной, надежной, а также легко изготавливается, удобна в обслуживании, легко проверяется и повышает коэффициент полезного действия.

Техническое решение

Согласно настоящему изобретению предложена система измерения турбулентности потока турбомашины, в частности компрессора турбомашины, при этом система содержит: первый приемный элемент с первым датчиком давления и первым отверстием; второй приемный элемент со вторым датчиком давления и вторым отверстием, выполненным под наклоном относительно первого отверстия; и отличается тем, что дополнительно содержит датчик температуры, при этом система предназначена для вычисления, в частности непрерывного, по меньшей мере двух компонентов направления скорости потока на основании данных от датчиков давления и датчика температуры.

Согласно предпочтительным вариантам осуществления настоящего изобретения система может содержать один или более из следующих признаков как по отдельности, так и во всех технически возможных комбинациях:

- по меньшей мере два компонента направления скорости потока содержат осевой компонент, и/или радиальный компонент, и/или окружной компонент;

- первый приемный элемент, первый датчик и первое отверстие выполнены с возможностью измерения общего давления потока;

- второй приемный элемент, второй датчик и второе отверстие выполнены с возможностью измерения статического давления потока газа;

- система дополнительно содержит третий приемный элемент с третьим датчиком давления и третьим отверстием, при этом все отверстия выполнены под наклоном относительно друг друга;

- отверстия содержат патрубки, при этом указанные патрубки выполнены под наклоном относительно друг друга;

- система дополнительно содержит несколько вторых приемных элементов, каждый из которых снабжен вторым датчиком давления и вторым отверстием, при этом каждое отверстие выполнено под наклоном относительно других отверстий;

- вторые приемные элементы расположены вокруг первого приемного элемента;

- система дополнительно содержит единую основную часть, в которой выполнены приемные элементы и отверстия и в которой размещены датчики;

- приемные элементы являются несквозными и/или герметично отделены друг от друга, в частности, основной частью;

- система предназначена для измерения уровня возмущения как функции изменений компонентов направления скорости потока;

- система содержит элемент для вычисления компонентов направления с частотой вычисления, которая больше или равна 300 Гц, или 800 Гц, или 10 кГц для каждого компонента направления;

- первое отверстие выполнено на расстоянии от второго отверстия или каждого второго отверстия, составляющем не более чем 1 мм, или 0,5 мм, или 0,2 мм;

- система предназначена для вычисления по меньшей мере двух компонентов направления локальной скорости потока газа на основании данных от датчиков давления и датчика температуры;

- компоненты определяют вектор скорости в пространстве в некоторой точке потока;

- система содержит несколько датчиков температуры, каждый из которых расположен в приемном элементе, при этом отверстия указанных приемных элементов выполнены под наклоном, при необходимости они все выполнены под наклоном, относительно друг друга; в каждом из указанных приемных элементов размещен датчик давления, при этом несколько датчиков температуры при необходимости может содержать по меньшей мере три, или четыре, или пять, или семь датчиков температуры;

- поток представляет собой сжимаемый поток газа;

- система дополнительно содержит ось вращения турбомашины, при этом первое отверстие образует общую плоскость, по существу перпендикулярную оси вращения;

- второе отверстие проходит по существу параллельно оси вращения турбомашины или выполнено под наклоном с углом, составляющим от 5° до 85° включительно, или от 30° и 60° включительно, или от 40° до 50° включительно;

- датчики давления представляют собой электрические датчики, и/или датчик температуры представляет собой электрический датчик;

- ширина по меньшей мере одного или каждого отверстия приемного элемента меньше или равна 5,00 мм, или 1,00 мм, или 0,50 мм.

Согласно настоящему изобретению также предложена система измерения турбулентности потока в турбомашине и/или вычисления скорости потока в турбомашине, в частности для компрессора турбомашины, отличающаяся тем, что система содержит датчик температуры и лопатку, которая имеет кривую переднюю кромку; первый приемный элемент с датчиком давления и первым отверстием; второй приемный элемент с другим датчиком давления и вторым отверстием, при этом отверстия расположены вдоль кривизны кривой передней кромки и при необходимости имеют разное направление; при этом система предназначена для определения скорости по меньшей мере двух компонентов потока посредством датчика температуры и датчиков давления.

Согласно настоящему изобретению также предложен компрессор турбомашины, в частности компрессор низкого давления турбомашины, содержащий входной воздухозаборник с кольцевым рядом лопаток и систему измерения турбулентности и отличающийся тем, что система выполнена согласно настоящему изобретению, при этом при необходимости датчики давления представляют собой электрические датчики, и/или датчик температуры представляет собой электрический датчик.

Согласно предпочтительным вариантам осуществления настоящего изобретения компрессор может содержать один или более из следующих признаков как по отдельности, так и во всех технически возможных комбинациях:

- лопатки имеют передние кромки, при этом отверстия приемных элементов расположены в осевом направлении на уровне передних кромок;

- отверстия приемных элементов расположены радиально на одной передней кромке лопатки для измерения там по меньшей мере двух компонентов скорости потока;

- компрессор содержит внутреннюю оболочку, соединенную с лопатками, при этом отверстия приемных элементов расположены радиально на высоте оболочки;

- отверстия приемных элементов скомбинированы в одном проходящем радиально элементе в виде лопатки и составляют не более чем 30 %, или 10 %, или 5 % радиальной высоты соответствующей лопатки;

- система содержит кабели, проходящие в толщину одной лопатки кольцевого ряда лопаток;

- первое отверстие пересекает линия, образующая переднюю кромку, и два вторых отверстия расположены соответственно на внутренней кривой поверхности и на внешней кривой поверхности лопатки;

- система предназначена для вычисления компонентов на хвостовике лопатки;

- толщина в направлении окружности основной части меньше или равна максимальной толщине лопатки.

Согласно настоящему изобретению также предложена турбомашина, в частности турбореактивный двигатель, содержащая по меньшей мере одну систему измерения и/или один компрессор и отличающаяся тем, что система или каждая система измерения выполнена согласно настоящему изобретению и/или компрессор выполнен согласно настоящему изобретению.

Согласно одному предпочтительному варианту осуществления настоящего изобретения турбомашина, при необходимости компрессор, содержит несколько систем вычисления, выполненных согласно настоящему изобретению, и датчик температуры, который при необходимости только один и является общим для нескольких систем.

Согласно предпочтительному варианту осуществления настоящего изобретения турбомашина содержит входной вентилятор, который в осевом направлении обращен к каждому, или нескольким, или по меньшей мере одному из отверстий приемного элемента.

Как правило, предпочтительные варианты осуществления каждого объекта настоящего изобретения в равной степени применимы к другим объектам настоящего изобретения. Каждый объект настоящего изобретения может применяться в комбинации с другими объектами, и объекты настоящего изобретения могут в равной степени применяться в комбинации с вариантами осуществления из описания, которые дополнительно могут применяться в комбинации друг с другом, во всех технически возможных комбинациях.

Обеспечиваемые преимущества

Настоящее изобретение делает возможным точное измерение скорости потока в двух или трех направлениях турбомашины. На основании скорости, измеряемой посредством датчиков, становится возможной оценка изменений направления потока, при этом известно, в каких направлениях эти изменения происходят. Следовательно, первичный поток на входе в компрессор определяется лучше. Действия по устранению нестабильности и срыва в компрессоре можно выполнять быстрее и более точно.

Краткое описание чертежей

На фиг. 1 показана осевая турбомашина в соответствии с настоящим изобретением.

На фиг. 2 представлено схематическое изображение компрессора турбомашины в соответствии с настоящим изобретением.

На фиг. 3 показана система измерения турбулентности в соответствии с настоящим изобретением.

На фиг. 4 показана основная часть системы измерения в соответствии с настоящим изобретением.

На фиг. 5 представлен разрез системы измерения, выполненный по линии 5-5 на фиг. 4.

Описание вариантов осуществления

В следующем описании термины «внутренний» и «внешний» касаются положения относительно оси вращения осевой турбомашины. Осевое направление соответствует направлению вдоль оси вращения турбомашины. Радиальное направление является перпендикулярным оси вращения. Термины «выше по потоку» и «ниже по потоку» касаются основного направления потока в турбомашине.

На фиг. 1 представлено упрощенное изображение осевой турбомашины. В этом конкретном случае это турбореактивный двигатель. Турбореактивный двигатель 2 содержит первую ступень сжатия, называемую компрессором 4 низкого давления, вторую ступень сжатия, называемую компрессором 6 высокого давления, камеру 8 сгорания и одну или более ступеней 10 турбины. При применении механическая энергия турбины 10, передаваемая на ротор 12 через центральный вал, приводит в движение два компрессора 4 и 6. Последние содержат несколько рядов лопаток ротора, связанных с рядами лопаток статора. Следовательно, вращение ротора вокруг своей оси 14 вращения обеспечивает возникновение потока воздуха и его постепенное сжатие до входа в камеру 8 сгорания.

С ротором 12 соединен входной вентилятор 16, который создает поток воздуха, разделяемый на первичный поток 18, который проходит через разные вышеупомянутые ступени турбомашины, и на вторичный поток 20, который проходит по кольцевому каналу (показан частично) вдоль машины, чтобы затем вновь объединиться с первичным потоком на выходе из турбины. У вентилятора 16 может быть диаметр, который больше или равен 2,00 м, или 2,50 м, или 3,00 м. Он может содержать от пятнадцати до тридцати лопаток. С вентилятором 16 может быть соединен делитель.

Вторичный поток 20 можно ускорить для создания реактивной тяги, в принципе необходимой для полета реактивного воздушного судна. Первичный поток 18 и вторичный поток 20 представляют собой соосные кольцевые потоки друг в друге. Они направляются корпусом турбомашины и/или частями оболочки.

На фиг. 2 показан вид в разрезе компрессора осевой турбомашины, такой как на фиг. 1. Компрессор может представлять собой компрессор 4 низкого давления. Здесь видно часть вентилятора 16 и сопло 22, обеспечивающее разделение на первичный поток 18 и вторичный поток 20. Ротор 12 содержит несколько рядов лопаток 24 ротора, в данном случае - три ряда.

Компрессор 4 низкого давления содержит несколько статоров, в данном случае четыре, каждый из которых содержит ряд лопаток 26 статора. Статоры связаны с вентилятором 16 или с рядом лопаток ротора для уменьшения кинетической энергии потока воздуха, чтобы преобразовывать скорость потока в давление, в частности в статическое давление.

Лопатки 26 статора проходят по существу радиально от внешнего корпуса 27 и могут быть прикреплены к нему и зафиксированы относительно него посредством штифтов. Они обеспечивают опору частям 28 внутренней оболочки, которые покрыты слоями из материала, допускающего обработку абразивным инструментом, и обеспечивают уплотнение с ротором 12. Из-за того, что вращение вентилятора 16 происходит непосредственно выше по потоку относительно лопаток 26 статора на входе в компрессор, то есть на входе в разделительное сопло 22, первичный поток 18 испытывает турбулентность. Первичный поток 18 характеризуется пиками давления, обусловленными вращением лопаток 16 вентилятора. Следовательно, турбулентности характеризуются уменьшением давления, например завихрениями, вызванными работой лопаток вентилятора. Чтобы оценить турбулентность и, в частности, скорости потока в ней в осевом направлении, а также в радиальном направлении и направлении вдоль окружности, компрессор 4 содержит по меньшей мере одну систему 30 измерения турбулентности, при необходимости несколько систем 30 измерения турбулентности. Ширина по окружности лопатки вентилятора больше или равна расстоянию между двумя расположенными выше по потоку лопатками на входе в компрессор. Эта ширина может быть больше или равна двукратной или трехкратной величине указанного расстояния.

На фиг. 3 представлено схематическое изображение области турбомашины, взятой с фиг. 2. Система 30 измерения турбулентности содержит вычислительный элемент 32, обеспечивающий возможность вычисления компонентов первичного потока 18. Лопатка 26 статора проходит радиально от внешнего корпуса 27 до внутренней оболочки 28.

Лопатка 26 имеет переднюю кромку 34 и заднюю кромку 36, которые определяют ее внутреннюю кривую поверхность и ее внешнюю кривую поверхность. Система 30 измерения может содержать основную часть 38. Последняя может быть смещенной от лопатки 26 в направлении вдоль окружности и/или вдоль оси. В качестве альтернативы основная часть 38 может быть встроенной в лопатку 26, то есть может образовывать внутреннюю кривую поверхность и/или внешнюю кривую поверхность, и/или основная часть расположена между указанными поверхностями, например, на расстоянии от них.

Основная часть 38 может быть прикреплена к внутренней оболочке 28 для измерения турбулентности и колебаний потока в ней. Кроме того, колебания могут изменяться в зависимости от частоты прохождения лопаток вентилятора. Основная часть 38 может в целом поддерживать переднюю кромку 34 лопатки 26. Она может иметь постоянную кривизну и/или характеризоваться последовательностью уступов, расположенных вдоль передней кромки 34.

Передняя сторона 40 основной части 38 расположена на пути первичного потока 18. Основная часть 38 и, следовательно, ее передняя сторона 40 встроены в радиальном направлении в хвостовик лопатки 26, например, на первые 25 % или первые 10 % лопатки 26, измеренные от внутренней оболочки 28. Более того, основная часть 38 может быть ограничена радиальной высотой внутренней оболочки 28, в частности, из-за наклона ее окружного профиля.

Чтобы обеспечивать измерение и вычисление, система 30 содержит несколько датчиков (не показаны), подсоединенных к вычислительному элементу 32, который может быть снаружи внешнего корпуса 27. С этой целью система 30 может содержать кабели 42, проходящие радиально сквозь лопатку 26. Эти кабели 42 могут быть расположены в толщине лопатки 26.

Вычислительный элемент 32 содержит память, модуль для обработки данных, поступающих от датчиков, и компьютерную программу. Благодаря, в том числе, этим средствам, система способна вычислять каждый компонент направления непрерывно. Вычисление осуществляется несколько раз в секунду, например с частотой, которая больше, чем частота прохождения лопаток вентилятора. Частота вычисления может быть больше или равна 50 Гц, или 500 Гц, или 5000 Гц, в частности для каждого компонента. Вычисления могут осуществляться для разных радиальных положений датчиков. Можно получить характеристику граничного слоя.

Система 30 предназначена для измерения уровня возмущения как функции изменений компонентов направления скорости потока. Учитывается частота и величина изменения по меньшей мере одного, или нескольких, или каждого компонента направления.

На фиг. 4 представлено изометрическое изображение системы 30 измерения турбулентности потока в турбомашине, при этом система подобна или идентична описанной со ссылками на фиг. 2 и/или фиг. 3.

Основная часть 38 содержит по меньшей мере два приемных элемента 44 с отверстиями, выполненными в передней стороне 40. В приемных элементах 44 размещены электрические датчики, в том числе по меньшей мере один датчик температуры и датчики давления. Приемные элементы 44 могут быть расположены по меньшей мере одним, например радиальным, столбцом или несколькими, при необходимости параллельными радиальными столбцами. Предусматривается расположение двумя или тремя столбцами (один столбец здесь скрыт). Приемные элементы 44 также могут быть расположены рядами, например по окружности. Приемные элементы 44 и, таким образом, их отверстия могут образовывать на передней стороне 40 сетку. Могут предусматриваться другие расположения. Сетка может быть неоднородной.

Основную часть 38 может продолжать крепежная пластина 46. Она обеспечивает ее прикрепление к оболочке.

На фиг. 5 представлен разрез системы измерения, выполненный по линии 5-5 на фиг. 4, например по ряду приемных элементов. Этот ряд может представлять все приемные элементы системы. Три приемных элемента могут образовывать группу, и система может содержать несколько групп, расположенных друг над другом в радиальном направлении, например по передней кромке лопатки.

Основная часть 38 содержит, на этом уровне, три приемных элемента с их отверстиями. Приемный элемент на уровне оси 14 вращения может рассматриваться как первый приемный элемент 47, при этом его отверстие представляет собой первое отверстие 48. Первое отверстие 48 может проходить перпендикулярно оси 14 вращения или по меньшей мере иметь прямолинейный сегмент, перпендикулярный указанной оси 14. В качестве альтернативы или дополнительно первое отверстие проходит перпендикулярно потоку 18. Посредством первого приемного элемента и его первого отверстия можно измерять общее давление, то есть сумму динамического давления и статического давления. В первом приемном элементе 47 может быть размещен по меньшей мере один первый датчик 52 давления. В первом приемном элементе факультативно размещен датчик 53 температуры. Датчик температуры может быть снаружи приемного элемента.

Дополнительно в основной части 38 может быть выполнено по меньшей мере два боковых приемных элемента 54, также называемых вторыми приемными элементами 54. Эти вторые приемные элементы 54 расположены по обе стороны первого приемного элемента 47. Они могут иметь вторые отверстия 56. По меньшей мере одно или каждое из них выполнено под наклоном относительно первого отверстия 47. Два отверстия 56 могут быть выполнены под наклоном относительно друг друга. При необходимости первое отверстие и два вторых отверстия выполнены под наклоном относительно друг друга.

Кроме того, система 30 содержит по меньшей мере три вторых приемных элемента, отверстия которых выполнены под наклоном относительно друг друга, а также выполнены под наклоном относительно первого отверстия 48. Этот же принцип может применяться в случае четырех, пяти, шести или по меньшей мере десяти вторых отверстий вторых приемных элементов. Каждое отверстие (48; 56) имеет общую плоскость. Соответствующие наклоны могут быть измерены относительно общих плоскостей. По меньшей мере один или каждый второй приемный элемент 54 содержит второй датчик 58 давления. Факультативно по меньшей мере в одном, или нескольких, или каждом втором приемном элементе 54 размещен датчик температуры, при необходимости в дополнение к датчику в первом приемном элементе 47 или вместо него.

В качестве альтернативы или дополнительно первый приемный элемент расположен на пути потока 18 и/или первый приемный элемент выполнен под наклоном относительно оси 14 вращения, угол которого равен углу атаки лопаток вентилятора, при этом указанный угол атаки измеряется на внутреннем конце лопатки. Угол атаки может быть измерен на профиле лопатки вентилятора с использованием сегмента, соединяющего переднюю кромку с задней кромкой указанной лопатки. Отверстие 48 факультативно проходит перпендикулярно указанной хорде.

В случае расположения первого отверстия 48 на пути потока 18 датчики давления обеспечивают возможность определения общего давления и углов набегания потока, которые также называются «углом тангажа» и «углом рыскания». С помощью таких измерений давления также можно вычислить число Маха, в частности для каждого отверстия.

Кроме того, сведения о температуре в первом приемном элементе и/или в одном, или нескольких, или каждом из вторых приемных элементов позволяют получить плотность, следовательно, скорость звука и, наконец, скорость потока, которую можно разбить на ее три компонента благодаря сведениям об углах набегания потока.

Отверстия (48; 56) факультативно могут обеспечиваться посредством сопел (не показаны). Эти сопла продлевают приемные элементы за пределы основной части 38. Они могут проходить перпендикулярно поверхности передней стороны 40. Таким образом, сопла могут быть выполнены под наклоном относительно друг друга.

1. Система (30) измерения турбулентности потока (18; 20) турбомашины (2), в частности компрессора (4; 6) турбомашины, при этом система (30) содержит

первый приемный элемент (47) с первым датчиком (52) давления и первым отверстием (48);

 второй приемный элемент (54) со вторым датчиком (58) давления и вторым отверстием (56), выполненным под наклоном относительно первого отверстия (48);

 датчик (53) температуры;

при этом система (30) предназначена для вычисления, в частности непрерывного, по меньшей мере двух компонентов направления скорости потока (18; 20) на основании данных от датчиков (52; 58) давления и датчика (53) температуры;

отличающаяся тем, что отверстия (48; 56) приемных элементов (44; 47; 54) скомбинированы в одном проходящем радиально элементе (26) в виде лопатки и составляют не более чем 30 %, или 10 %, или 5 % радиальной высоты соответствующей лопатки.

2. Система (30) по п. 1, отличающаяся тем, что по меньшей мере два компонента направления скорости потока содержат осевой компонент, и/или радиальный компонент, и/или окружной компонент.

3. Система (30) по одному из пп. 1 или  2, отличающаяся тем, что первый приемный элемент (47), первый датчик (52) и первое отверстие (48) выполнены с возможностью измерения общего давления потока (18; 20).

4. Система (30) по любому из пп. 1–3, отличающаяся тем, что второй приемный элемент (54), второй датчик (58) и второе отверстие (56) выполнены с возможностью измерения статического давления потока (18; 20).

5. Система (30) по любому из пп. 1–4, отличающаяся тем, что дополнительно содержит третий приемный элемент с третьим датчиком давления и третьим отверстием, при этом все отверстия выполнены под наклоном относительно друг друга.

6. Система (30) по любому из пп. 1–5, отличающаяся тем, что отверстия (48; 56) содержат патрубки, при этом указанные патрубки выполнены под наклоном относительно друг друга.

7. Система (30) по любому из пп. 1–6, отличающаяся тем, что дополнительно содержит несколько вторых приемных элементов (54), каждый из которых снабжен вторым датчиком (58) давления и вторым отверстием (56), при этом каждое отверстие выполнено под наклоном относительно других отверстий.

8. Система (30) по п. 7, отличающаяся тем, что вторые приемные элементы (54) расположены вокруг первого приемного элемента (47).

9. Система (30) по любому из пп. 1–8, отличающаяся тем, что дополнительно содержит единую основную часть (38), в которой выполнены приемные элементы (44; 47; 54) и отверстия (48; 56) и в которой размещены датчики.

10. Система (30) по любому из пп. 1–9, отличающаяся тем, что приемные элементы (44; 47; 54) являются несквозными и/или герметично отделены друг от друга, в частности, основной частью (38).

11. Система (30) по любому из пп. 1–10, отличающаяся тем, что предназначена для измерения уровня возмущения как функции изменений компонентов направления скорости потока (18; 20).

12. Система (30) по любому из пп. 1–11, отличающаяся тем, что содержит элемент (32) для вычисления компонентов направления с частотой вычисления, которая больше или равна 300 Гц, или 800 Гц, или 10 кГц для каждого компонента направления.

13. Компрессор (4; 6) турбомашины (2), в частности компрессор низкого давления турбомашины, содержащий входной воздухозаборник с кольцевым рядом лопаток (26) и систему (30) измерения турбулентности, отличающийся тем, что система (30) выполнена по любому из пп. 1–12, при этом при необходимости датчики (52; 58) давления представляют собой электрические датчики, и/или датчик (53) температуры представляет собой электрический датчик.

14. Компрессор (4; 6) по п. 13, отличающийся тем, что лопатки (26) имеют передние кромки (34), при этом отверстия (48; 56) приемных элементов (44; 47; 54) расположены в осевом направлении на уровне передних кромок (34).

15.Компрессор (4; 6) по п. 14, отличающийся тем, что отверстия (48; 56) приемных элементов (44; 47; 54) расположены радиально на одной передней кромке (34) лопатки (26) для измерения по меньшей мере двух компонентов скорости потока.

16. Компрессор (4; 6) по любому из пп. 13–15, отличающийся тем, что содержит внутреннюю оболочку (28), соединенную с лопатками (26), при этом отверстия (48; 56) приемных элементов (44; 47; 54) расположены радиально на высоте оболочки (28).

17. Турбомашина (2), в частности турбореактивный двигатель, содержащая по меньшей мере одну систему (30) измерения турбулентности и/или один компрессор, отличающаяся тем, что система или каждая система (30) выполнена по любому из пп. 1–12 и/или компрессор выполнен по любому из пп. 13–16.

18. Турбомашина (2) по п. 17, отличающаяся тем, что она, при необходимости компрессор, содержит несколько систем (30) измерения турбулентности, выполненных по любому из пп. 1–12, и датчик (53) температуры, который при необходимости только один и является общим для нескольких систем (30) измерения турбулентности.

19. Турбомашина (2) по одному из пп. 17 или 18, отличающаяся тем, что содержит вентилятор (16), который в осевом направлении обращен к каждому, или нескольким, или по меньшей мере одному из отверстий (48; 56) приемного элемента (44; 47; 54).



 

Похожие патенты:

Изобретение относится к нефтяному машиностроению и предназначено для разборки многоступенчатых погружных центробежных насосов, применяемых для откачки пластовой жидкости из скважин при нефтедобыче. Устройство содержит направляющую раму, на которой последовательно установлены прижатые друг к другу пневмомолот, насадка с коническими посадочными поверхностями, отрезок трубы с боковым окном, ступенчатый фланец, прижатый к торцу указанного корпуса.

Изобретение относится к области насосных установок, предназначенных для нагнетания под высоким давлением жидкости, например, для поддержания пластового давления. Установка горизонтальная насосная содержит опорную раму, электродвигатель, соединенный посредством муфты с упорной камерой, и секционный центробежный насос.

Изобретение относится к области гидромашиностроения и может быть использовано в насосных агрегатах. Модуль радиального смещения содержит цилиндрический корпус и размещенный внутри него вал с концевыми посадочными элементами для соединения со смещенными по оси соединяемыми валами.

Группа изобретений относится к фиксатору (29) насосного подшипника для насоса влажного хода, причем фиксатор (29) насосного подшипника содержит радиально внутреннюю секцию (49), радиальный подшипник (37) с внутренней поверхностью (41) скольжения, выполненной с возможностью обеспечения смазочной пленки между поверхностью (41) скольжения и роторным валом (13) насоса (1), причем радиальный подшипник (37) установлен в радиально внутреннюю секцию (49), и радиально внешнюю секцию (51), продолжающуюся радиально наружу от секции (49).

Высокотемпературный насос используется для перекачки нефтепродуктов с температурой до 420°С. Насос содержит корпус всасывания (1), корпус средний (2), корпус нагнетания (3), не менее одной рабочей ступени (4), рабочие колеса (5), которые установлены на рабочем валу (6), расположенном в опорах (7), (8), (9), приводной вал (13) электродвигателя и муфту (14), связывающую приводной вал (13) электродвигателя с рабочим валом (6), постоянные магниты (17) и (18), выполненные из сплава редкоземельных металлов, термостабилизированных на 450°С.

Изобретение относится к области насосостроения. Герметичный электронасос включает корпус с подводящим и отводящим патрубками и электродвигатель, прикрепленный к корпусу.

Настоящее изобретение относится к области перекачки попутного нефтяного газа, а именно к промывке сменно-проточной части центробежного компрессора (ЦБК) и внутритрубного пространства аппаратов воздушного охлаждения газа (АВОг). Узел нагнетания и охлаждения попутного нефтяного газа включает первый участок газопровода, соединенный с центробежным компрессором, второй участок газопровода, соединяющий центробежный компрессор и аппарат воздушного охлаждения газа, который соединен с третьим участком газопровода, при этом во внутритрубное пространство первого и/или второго участка газопровода внедрено устройство промывки с возможностью подачи моющего раствора внутрь газопровода в поток газовой среды с последующим его переносом в полость центробежного компрессора и/или внутритрубного пространства аппарата воздушного охлаждения газа соответственно.

Представлены способы и системы для компрессора турбонагнетателя двигателя. Например, компрессор может содержать проходной канал и резонансную камеру, окружающую проходной канал, причем проходной канал соединен по текучей среде с резонансной камерой через канал рециркуляции, отводной канал и множество отверстий, расположенных между каналом рециркуляции и отводным каналом.

Заявленное техническое решение относится к области добычи нефти электроприводными центробежными насосами. Электроприводной центробежный насос включает две группы насосных секций.

Изобретение относится к нефтепогружному оборудованию, в частности к погружным маслозаполненным электродвигателям привода центробежных насосов, служащих для подъема пластовой жидкости. Электродвигатель содержит статор, ротор, состоящий по крайней мере из одного пакета ротора, вал со шпоночным пазом и каналами для подвода смазки к подшипникам.

Турбомашина (10) содержит устройство (62) отвода воздуха из компрессора (56) и охлаждающее устройство (50). Устройство (62) отвода воздуха из компрессора (56) высокого давления содержит клапан отвода воздуха из компрессора (56), выход которого связан с контуром (68) отвода воздуха из компрессора, выполненным с возможностью отвода от компрессора потока нагнетаемого воздуха под давлением в или за пределы внутреннего потока струи газа турбомашины.
Наверх