Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой через трубопровод, оборудованный задвижкой, соединен с входным патрубком приемного блока, имеющего каналы для прохода нефтяного флюида, который соединен с одной стороны через муфту с электродвигателем, а с другой стороны соединен последовательно с насосным блоком и блоком магнитной обработки. Блок включает статор со статорными гильзами и ротор с турбулизаторами потока, снабженными постоянными магнитами. В основании блока магнитной обработки установлен шнековый завихритель потока, выход которого связан с общим коллектором. Обеспечивается эффективное снижение асфальтосмолопарафиновых и солевых отложений и коррозии в системах сбора и транспортировки нефти. 1 ил.

 

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Изобретение может быть использовано для борьбы с асфальтосмолопарафиновыми отложениями (АСПО), соли и коррозии в промысловой системе сбора и транспортировки нефти.

Проблема образования отложений обусловлена не только многокомпонентным сложным составом нефтяного флюида, но и изменениями термобарических условий по ходу движения потока в технологической схеме в зависимости от конструктивных особенностей технологического оборудования.

В настоящее время одним из методов борьбы с данной проблемой является магнитная обработка транспортируемого флюида. Преимуществами данного способа являются низкие энергетические, финансовые затраты и непрерывный процесс воздействия на перекачиваемый флюид.

Магнитная обработка обеспечивает снижение адгезионной способности зародышей кристаллов солей, АСПО и предотвращает их интенсивную кристаллизацию, что значительно снижает отложения на внутренних стенках трубопроводов и технологического оборудования.

Известна система для магнитной обработки жидкости в скважине, оборудованная электроцентробежным насосом с погружным электродвигателем (патент РФ №2346146, МПК Е21 В 41/02, опубликовано 10.02.2009 г.), включающая устройство для магнитной обработки жидкости проточного типа с трубой, по которой протекает поток добываемой жидкости, и охваченный герметичным кожухом магнитный блок, установленный на трубе.

Устройство размещено ниже погружного электродвигателя (ПЭД) и выполнено состыкованным с ним посредством соединительного узла в виде перфорированного патрубка. Патрубок соединен с одного конца с ПЭД, а с другого - с трубой указанного устройства.

Недостатком данной системы является то, что магнитной блок обрабатывает жидкость в ламинарном потоке, что снижает его эффективность.

Известно устройство для магнитной обработки потока жидкости (патент РФ №2275334, МПК C02F 1/48, опубликовано 27.04.2006 г.), содержащее узел магнитной обработки и узел турбулизации, выполненный в виде закрепленных на стержне упорных элементов, между которыми установлен рабочий элемент. Элементы выполнены с диаметрально противоположными плоскими гранями. Узел магнитной обработки выполнен в виде блока соосно установленных на стержне постоянных кольцевых магнитов, закрытых кожухом.

Недостатком данного технического решения является то, что узел турбулизации выполнен в виде отдельного блока, что усложняет конструкцию устройства, также постоянные магниты в узле магнитной обработки находятся в неподвижном состоянии, что не обеспечивает эффективной магнитной обработки потока.

Известно гидродинамическое устройство для магнитной обработки скважинного флюида (патент РФ №169892, МПК F21B 37/00, F04D1 3/10 опубликовано 05.04.2017 г.), содержащее цилиндрический корпус с основанием, оборудованным фильтром, и головкой, внутри которого установлен на трех радиальных и одном осевом подшипниках вал ротора, на котором последовательно от основания по направлению потока флюида установлены завихритель потока с лопастями, имеющими сечение клиновидной формы, расположенными под углом к оси вала, статорные гильзы с прикрепленными постоянными магнитами из самарий-кобальтового сплава, которые чередуются с турбулизаторами потока, лопасти которых имеют сечение прямоугольной формы и установлены вдоль оси вала, причем к ним прикреплены постоянные магниты, а основание и головка имеют каналы для прохода жидкости.

Недостатком данного технического решения, является ограниченная область применения, так как данное устройство предназначено только для предотвращения отложения солей на рабочих органах ЭЦН.

Техническим результатом предложенного изобретения является снижение интенсивности отложения солей, АСПО, механических примесей и продуктов коррозии на внутренней поверхности трубопроводов и технологического оборудования сбора и транспортировки нефти.

Технический результат достигается системой для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки, включающей автоматизированную групповую замерную установку, связанную трубопроводами с нефтяными скважинами, выход которой через трубопровод, оборудованный задвижкой, соединен с входным патрубком приемного блока, имеющего каналы для прохода нефтяного флюида, который соединен с одной стороны через муфту с электродвигателем, а с другой стороны соединен последовательно с насосным блоком и блоком магнитной обработки, содержащим статор со статорными гильзами и ротор с турбулизаторами потока, снабженными постоянными магнитами, а в основании блока магнитной обработки установлен шнековый завихритель потока, выход которого связан с общим коллектором.

Технический результат достигается за счет наложения магнитных полей постоянных магнитов, расположенных на статорных гильзах, и магнитных полей постоянных магнитов, вращающихся вместе с лопастями турбулизатора потока ротора, что усиливает магнитное поле, обеспечивая большую намагниченность транспортируемого потока, и способствует более эффективному снижению отложений АСПО, соли и коррозии.

Сущность изобретения поясняется принципиальной схемой системы для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки. Система включает автоматизированную групповую замерную установку (АГЗУ) 1, связанную трубопроводами 2 с нефтяными скважинами, выход АГЗУ через оборудованные задвижками 3 трубопроводы соединен со входом приемного блока 4, который с одной стороны через муфту 5 связан с электродвигателем 6, а с другой стороны соединен последовательно с насосным блоком 7 и с блоком магнитной обработки 8, содержащим статор со статорными гильзами и ротор с турбулизаторами потока, снабженные постоянными магнитами (на схеме не показаны). В основании магнитного блока установлен шнековый завихритель потока 9, обеспечивающий усиление турбулизации и эффективности магнитного поля.

В случае необходимости ремонта линии магнитной обработки АГЗУ посредством байпасной линии 10 через задвижки 3 может быть соединена напрямую с общим коллектором.

Изменение пропускной способности АГЗУ и линейного давления для эффективной транспортировки флюида можно производить за счет изменения частоты питающего тока электродвигателя.

Система для магнитной обработки нефтяного флюида работает следующим образом.

После сбора нефтяного флюида по нефтепроводам 2 и замера объема нефтяного флюида в АГЗУ 1 поток через задвижку 3 поступает во входной патрубок приемного блока 4. Далее поток нефтяного флюида через насосный блок 7 направляется в блок магнитной обработки 8 и шнековый завихритель потока 9. Здесь осуществляется магнитная обработка транспортируемого флюида и усиление турбулизации потока. Это согласно известным экспериментальным исследованиям и техническим решениям, описанным выше, обеспечивает снижение адгезионной способности зародышей кристаллов солей, АСПО и предотвращает их интенсивную кристаллизацию, что значительно снижает коррозию и отложения на внутренней поверхности трубопроводов и технологического оборудования сбора и транспортировки нефти.

Таким образом, предложенная система для магнитной обработки эффективно снижает отложения на внутренней поверхности трубопроводов и технологического оборудования сбора и транспортировки нефти, предотвращает их коррозию.

Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки, включающая автоматизированную групповую замерную установку, связанную трубопроводами с нефтяными скважинами, выход которой через трубопровод, оборудованный задвижкой, соединен с входным патрубком приемного блока, имеющего каналы для прохода нефтяного флюида, который соединен с одной стороны через муфту с электродвигателем, а с другой стороны соединен последовательно с насосным блоком и блоком магнитной обработки, содержащим статор со статорными гильзами и ротор с турбулизаторами потока, снабженными постоянными магнитами, а в основании блока магнитной обработки установлен шнековый завихритель потока, выход которого связан с общим коллектором.



 

Похожие патенты:

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию температурного режима технологических процессов установки низкотемпературной сепарации газа в период, когда охлаждение добываемого газа осуществляют турбодетандерными агрегатами в условиях Севера РФ.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ включает предварительную очистку добытой газожидкостной смеси от механических примесей, отделение из нее части смеси нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени редуцирования, которые по мере их накопления в нижней части этого сепаратора отводят в разделитель жидкостей (РЖ).

Изобретение относится к области автоматизированных систем управления технологическими процессами транспорта газа и используется для диагностики и контроля разрешенного рабочего давления (далее - РРД), установленного по результатам внутритрубной диагностики, на линейных участках между крановыми площадками магистрального газопровода (далее - МГ).

Описаны устройства, системы и способы обнаружения и предоставления предупреждения касательно наличия жидкостного загрязнения в линии пневматической сети и/или пневматическом приборе. Устройство для обнаружения жидкости, обнаруживающее жидкостное загрязнение в пневматической сети и предоставляющее его индикацию, содержит: корпус; электронный датчик содержания влаги, расположенный в указанном корпусе и выполненный с возможностью соединения с пневматической сетью и обнаружения наличия жидкости в указанной пневматической сети; и устройство беспроводной передачи данных, расположенное в указанном корпусе и выполненное с возможностью передачи данных от электронного датчика содержания влаги в узел передачи данных компьютерной сети предприятия.

Изобретение относится к измерительной технике и может быть применено в устройстве обнаружения мест утечек рабочей среды нагруженных трубопроводов, находящихся в грунте. Особенностью данного способа локализации несанкционированной потери рабочей среды в трубопроводе на основе амплитудно-временного анализа и корреляции виброакустических сигналов является то, что дополнительно размещается третий чувствительный элемент.

Изобретение относится к области внутритрубной диагностики трубопроводов. Способ выявления растущих дефектов магистральных трубопроводов включает определение критерия выявления растущих дефектов, осуществление внутритрубной диагностики магистрального трубопровода путем пропуска внутритрубных инспекционных приборов (ВИП), определение на основании полученной информации величины параметра сигнала от дефекта, соответствующего выбранному для определения критерия выявления растущих дефектов; сопоставление величины параметра сигнала от дефекта с величиной соответствующего параметра сигнала от дефекта предыдущего пропуска ВИП; выявление разницы этих величин; проведение сравнения полученной разницы и критерия выявления растущих дефектов.

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти или нефтепродуктов. Система включает сервер автоматического управления магистрального трубопровода, соединенный посредством объединенной сети с сервером системы диспетчерского контроля и управления, при этом сервер автоматического управления магистрального трубопровода включает в себя модуль хранения набора заранее выбранных режимов работы трубопровода, модуль хранения набора заранее рассчитанных переходов между режимами работы трубопровода, модуль контроля технологического процесса перекачки нефти, модуль автоматического определения готовности технологического оборудования к переходу между режимами, модуль автоматического формирования команд переключения между режимами из модуля хранения набора заранее выбранных режимов работы трубопровода либо из модуля хранения набора заранее рассчитанных переходов между режимами работы трубопровода, модуль автоматического формирования команд аварийной остановки нефтеперекачивающих станций.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения пространственного положения оси трубопровода вне зависимости от особенностей его прокладки. Способ заключается в том, что на трубопровод с определяемым шагом в проекции на ось трубопровода устанавливаются метки, содержащие датчики пространственной ориентации, определяющие углы поворота в ортогональной системе координат, азимут и высотное положение.

Изобретение относится к контрольно-измерительной технике и может использоваться для определения координат планово-высотного положения оси трубопровода подземного исполнения, имеющего большие глубины заложения, на участках его переходов через глубоководные водные преграды, а также для контроля пространственного положения оси трубопровода при его прокладке методом наклонно-направленного бурения.

Группа изобретений относится к области трубопроводного транспорта и может быть использована для обнаружения местоположения дефектов магистральных и иных трубопроводов, а также врезок в трубопровод. Особенность изобретения заключается в том, что трехкомпонентной магнитометрической антенной непрерывно измеряют три ортогональные проекции градиента постоянного магнитного поля с последующим вычислением среднеквадратического значения, соответствующего скаляру объемного градиента магнитной индукции над обследуемым трубопроводом и вдоль него.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам очистки и промывки скважин от уплотнённых песчаных пробок. Колонну насосно-компрессорных труб (НКТ), оснащённую снизу пером, выполненным в виде цилиндрической насадки с пикой на конце, спускают в скважину до интервала пробки.
Наверх