Способ изготовления строительных блоков



Владельцы патента RU 2757868:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») (RU)

Изобретение относится к промышленному производству строительных материалов и может быть использовано при изготовлении строительных блоков, предназначенных для строительства малоэтажных зданий и коттеджей. Способ включает смешивание 32,5-34,7 мас. % вяжущего, 30,0-35,0 мас. % рисовой лузги, 3,1-3,3 мас. % минерального наполнителя и 1,0-1,2 мас. % ускорителя твердения с последующим формованием, отвердением и сушкой. При этом смешивание ингредиентов осуществляют в три этапа. На первом этапе ускоритель твердения соединяют с 3,4-4,2 мас. % пенообразователя и перемешивают в течение от 20 до 30 мин. На втором этапе полученный раствор соединяют с 25,0-26,6 мас. % предварительно высушенной при температуре от 60 до 70°С в течение от 40 до 45 мин и измельченной до размера частиц от 0,8 до 1,0 мм ботвы сахарной свеклы и выдерживают в течение от 30 до 40 мин при непрерывном перемешивании. На третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение от 10 до 15 мин. Техническим результатом является повышение эксплуатационных характеристик и расширение ассортимента материалов для строительных блоков. 4 з.п. ф-лы, 3 пр., 1 табл.

 

Изобретение относится к промышленному производству строительных материалов и может быть использовано при изготовлении строительных блоков, предназначенных для строительства малоэтажных зданий и коттеджей.

Известен способ изготовления строительных плит универсального назначения (Патент № 2511245 RU, опубл. 10.04.2020 г.), включающий перемешивание магнезиального вяжущего, органического наполнителя, минерального наполнителя и водного раствора хлорида магния с последующим формованием, отверждением и сушкой, причем минеральный наполнитель состоит из двух и более компонентов, одним из которых является совместно осажденный кальциево-магниевый компонент, вторым - перлит, а водный раствор хлорида магния перед добавлением в смесь предварительно смешивают с ингибитором коррозии. В качестве магнезиального вяжущего может быть использован каустический магнезит, каустический доломит, обоженный брусит и синтетический оксид магния. Для приготовления водного раствора хлористого магния с плотностью 1,1 – 1,3 г/см3может быть использован шестиводный хлорид магния или раствор хлорида магния природного происхождения (бишофит). Для снижения коррозии контактирующего со строительными плитами металлического оборудования в раствор хлорида магния предварительно вводится ингибитор коррозии в количестве 0,015 – 0,025% масс. В качестве ингибитора коррозии может быть использован натрий дигидрофосфат и натрий гидрофосфат. В качестве органического наполнителя могут быть использованы древесные опилки, древесная мука, шелуха рисовых семян, шелуха хлопковых семян, лузга подсолнечных семян или их смеси и др.

Недостатком данного способа является получение строительных плит с низкими эксплуатационными характеристиками.

Наиболее близким к заявляемому является способ изготовления строительных плит универсального назначения (Патент № 2504527 RU, опубл. 20.01.2014 г.), включающий перемешивание магнезиального вяжущего, органического наполнителя, минерального наполнителя и водного раствора хлорида магния с последующим формованием, отверждением и сушкой, причем минеральный наполнитель состоит из двух или более компонентов, одним из которых являются твердые отходы производства строительных плит на основе магнезиального вяжущего, вторым - перлит, а перед добавлением в смесь все сухие компоненты перемешивают до однородного состояния. В качестве магнезиального вяжущего может быть использован каустический магнезит, каустический доломит, обоженный брусит и синтетический оксид магния. Для приготовления водного раствора хлористого магния с плотностью 1,1 – 1,3 г/см3может быть использован шестиводный хлорид магния или раствор хлорида магния природного происхождения (бишофит). В качестве органического наполнителя могут быть использованы древесные опилки, древесная мука, шелуха рисовых семян, шелуха хлопковых семян, лузга подсолнечных семян и др. или их смесь.

Недостатком данного способа является получение строительных плит с низкими эксплуатационными характеристиками.

Задачей изобретения является расширение ассортимента материалов для строительных блоков.

Технический результат заключается в повышении эксплуатационных характеристик строительных блоков, а именно средней плотности, прочности на сжатие и прочности на изгиб.

Технический результат достигается тем, что способ изготовления строительных блоков включает смешивание вяжущего, рисовой лузги, минерального наполнителя и ускорителя твердения с последующим формованием, отвердением и сушкой, отличающийся тем, что смешивание ингредиентов осуществляют в три этапа, на первом этапе ускоритель твердения соединяют с пенообразователем и перемешивают в течение от 20 до 30 мин, на втором этапе полученный раствор соединяют с предварительно высушенной при температуре от 60 до 70 °С в течение от 40 до 45 мин и измельченной до размера частиц от 0,8 до 1,0 мм ботвой сахарной свеклы и выдерживают в течение от 30 до 40 мин при непрерывном перемешивании, на третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение от 10 до 15 мин, при этом соотношение исходных компонентов в общей смеси составляет, масс. %:

вяжущее 32,5 – 34,7
рисовая лузга 30,0 – 35,0
минеральный наполнитель 3,1 – 3,3
ускоритель твердения 1,0 – 1,2
измельченная ботва сахарной свеклы 25,0 – 26,6
пенообразователь 3,4 – 4,2

В качестве вяжущего используют смесь цемента и гипса строительного, взятых в соотношении 1:1. В качестве минерального наполнителя используют кремнезем. В качестве пенообразователя используют жидкое мыло. В качестве ускорителя твердения используют водный раствор хлорида кальция с плотностью 1,1 – 1,3 г/см3.

Соединение на первом этапе ускорителя твердения, а именно водного раствора хлорида кальция с плотностью 1,1 – 1,3 г/см3, с пенообразователем – жидким мылом, и перемешивание в течение от 20 до 30 мин с последующим соединением на втором этапе полученной смеси с предварительно высушенной при температуре от 60 до 70 °С в течение от 40 до 45 мин и измельченной до размера частиц от 0,8 до 1,0 мм ботвой сахарной свеклы и выдерживанием в течение от 30 до 40 мин при непрерывном перемешивании способствует получению стабильной пены. Это обусловлено увеличением вязкости пены в связи со способностью пектиновых веществ, входящих в состав ботвы сахарной свеклы, образовывать гели в водных растворах.

Предварительное высушивание ботвы сахарной свеклы при температуре от 60 до 70 °С в течение от 40 до 45 мин приводит к деструкции протопектина, а измельчение до размера частиц от 0,8 до 1,0 мм – к нарушению целостности клеточных стенок, что способствует повышению количества пектиновых веществ. Увеличение количества пектиновых веществ обеспечивает образование более плотных гелей, что оказывает влияние на повышение вязкости пены, а, следовательно, способствует получению стабильной пены.

Пектиновые вещества, входящие в состав ботвы сахарной свеклы, также вступают во взаимодействие с ионами кальция, содержащихся в водном растворе хлорида кальция с плотностью 1,1 – 1,3 г/см3, и ионами калия, входящих в состав жидкого мыла, что способствует образованию плотных устойчивых гелей. Плотные устойчивые гели, образованные на основе пектиновых веществ, входящих в состав ботвы сахарной свеклы, обеспечивают стабильность пены, а также пластичность формовочной смеси материала для строительных блоков.

Предварительное соединение и перемешивание до однородной консистенции вяжущего (смесь цемента и гипса строительного в соотношении 1:1), рисовой лузгой и минерального наполнителя (кремнезем) способствуют получению смеси с однородной консистенцией.

Однородность консистенции формовочной смеси материала для строительных блоков обеспечивается также соединением и смешиванием в течение от 10 до 15 мин на третьем этапе стабильной пены до однородной массы с предварительно перемешанными до однородного состояния вяжущим (смесь цемента и гипса строительного в соотношении 1:1), рисовой лузгой и минеральным наполнителем (кремнезем). При взаимодействии вяжущего и минерального наполнителя со стабильной пеной происходит увеличение их объема (вспучивание), в результате чего вяжущее и минеральный наполнитель приобретают микропористую структуру, благодаря этому вяжущее и минеральный наполнитель заполняют пространство между частицами рисовой лузги и способствуют равномерному ее распределению по всему объему смести. В связи с этим происходит повышение прочности и снижение плотности материала для строительных блоков.

Таким образом, совокупность предложенных технологических операций способствует достижению заявленного технического результата.

Способ изготовления строительных блоков реализуется следующим образом.

Исходные компоненты подготавливают и дозируют.

Вяжущее, рисовую лузгу и минеральный наполнитель смешивают в бетоносмесителе принудительного типа (лопастном). В качестве вяжущего используют смесь цемента и гипса строительного, взятых в соотношении 1:1. В качестве минерального наполнителя используют кремнезем.

Ботву сахарной свеклы предварительно высушивают в конвективной сушильной установке при температуре от 60 до 70 °С в течение от 40 до 45 мин и измельчают на машине универсальной резательной до размера частиц от 0,8 до 1,0 мм.

Смешивание исходных компонентов осуществляют в три этапа.

На первом этапе в гомогенизаторе соединяют ускоритель твердения с пенообразователем и перемешивают течение от 20 до 30 мин. В качестве пенообразователя используют жидкое мыло. В качестве ускорителя твердения используют водный раствор хлорида кальция с плотностью 1,1 – 1,3 г/см3.

На втором этапе полученный раствор ускорителя твердения и пенообразователя соединяют с предварительно подготовленной и измельченной ботвой сахарной свеклы и выдерживают в течение от 30 до 40 мин при непрерывном перемешивании.

На третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение от 10 до 15 мин.

Полученную смесь загружают в кассеты виброформовочного станка и формуют. Формованные блоки направляют на отвердевание и сушку. При этом соотношение компонентов в общей смеси составляет, масс. %:

вяжущее 32,5 – 34,7 32,5-34,7 36,4-42,8
рисовая лузга 30,0 – 35,0 30,0-35,0 28,3-32,2
минеральный наполнитель 3,1 – 3,3 3,1-3,3 2,1-2,3
ускоритель твердения 1,0 – 1,2 1,0-1,2 0,8-1,0
измельченная ботва сахарной свеклы 25,0 – 26,6 25,0-26,6 30,3-19,3
пенообразователь 3,4 – 4,2 3,4-4,2 2,1-2,4

Предлагаемый способ изготовления строительных блоков подтверждается примерами.

Пример 1.

Исходные компоненты подготавливают и дозируют.

Вяжущее, рисовую лузгу и минеральный наполнитель смешивают в бетоносмесителе принудительного типа (лопастном). В качестве вяжущего используют смесь цемента и гипса строительного, взятых в соотношении 1:1. В качестве минерального наполнителя используют кремнезем.

Ботву сахарной свеклы предварительно высушивают в конвективной сушильной установке при температуре 60 °С в течение 45 мин и измельчают на машине универсальной резательной до размера частиц 0,8 мм.

Смешивание исходных компонентов осуществляют в три этапа.

На первом этапе в гомогенизаторе соединяют ускоритель твердения с пенообразователем и перемешивают течение 20 мин. В качестве пенообразователя используют жидкое мыло. В качестве ускорителя твердения используют водный раствор хлорида кальция с плотностью 1,1 – 1,3 г/см3.

На втором этапе полученный раствор ускорителя твердения и пенообразователя соединяют с предварительно подготовленной и измельченной ботвой сахарной свеклы и выдерживают в течение 30 мин при непрерывном перемешивании.

На третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение 10 мин.

Полученную смесь загружают в кассеты виброформовочного станка и формуют. Формованные блоки направляют на отвердевание и сушку. При этом соотношение компонентов в общей смеси составляет, масс. %:

вяжущее 34,7
рисовая лузга 30,0
минеральный наполнитель 3,3
ускоритель твердения 1,2
измельченная ботва сахарной свеклы 26,6
пенообразователь 4,2

Пример 2.

Исходные компоненты подготавливают и дозируют.

Вяжущее, рисовую лузгу и минеральный наполнитель смешивают в бетоносмесителе принудительного типа (лопастном). В качестве вяжущего используют смесь цемента и гипса строительного, взятых в соотношении 1:1. В качестве минерального наполнителя используют кремнезем.

Ботву сахарной свеклы предварительно высушивают в конвективной сушильной установке при температуре 65 °С в течение 43 мин и измельчают на машине универсальной резательной до размера частиц 0,9 мм.

Смешивание исходных компонентов осуществляют в три этапа.

На первом этапе в гомогенизаторе соединяют ускоритель твердения с пенообразователем и перемешивают течение 25 мин. В качестве пенообразователя используют жидкое мыло. В качестве ускорителя твердения используют водный раствор хлорида кальция с плотностью 1,1 –1,3 г/см3.

На втором этапе полученный раствор ускорителя твердения и пенообразователя соединяют с предварительно подготовленной и измельченной ботвой сахарной свеклы и выдерживают в течение 35 мин при непрерывном перемешивании.

На третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение 13 мин.

Полученную смесь загружают в кассеты виброформовочного станка и формуют. Формованные блоки направляют на отвердевание и сушку. При этом соотношение компонентов в общей смеси составляет, масс. %:

вяжущее 33,6
рисовая лузга 32,5
минеральный наполнитель 3,2
ускоритель твердения 1,1
измельченная ботва сахарной свеклы 25,8
пенообразователь 3,8

Пример 3.

Исходные компоненты подготавливают и дозируют.

Вяжущее, рисовую лузгу и минеральный наполнитель смешивают в бетоносмесителе принудительного типа (лопастном). В качестве вяжущего используют смесь цемента и гипса строительного, взятых в соотношении 1:1. В качестве минерального наполнителя используют кремнезем.

Ботву сахарной свеклы предварительно высушивают в конвективной сушильной установке при температуре 70°С в течение 40 мин и измельчают на машине универсальной резательной до размера частиц 1,0 мм.

Смешивание исходных компонентов осуществляют в три этапа.

На первом этапе в гомогенизаторе соединяют ускоритель твердения с пенообразователем и перемешивают течение 30 мин. В качестве пенообразователя используют жидкое мыло. В качестве ускорителя твердения используют водный раствор хлорида кальция с плотностью 1,1 – 1,3 г/см3.

На втором этапе полученный раствор ускорителя твердения и пенообразователя соединяют с предварительно подготовленной и измельченной ботвой сахарной свеклы и выдерживают в течение 40 мин при непрерывном перемешивании.

На третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение 15 мин.

Полученную смесь загружают в кассеты виброформовочного станка и формуют. Формованные блоки направляют на отвердевание и сушку. При этом соотношение компонентов в общей смеси составляет, масс. %:

вяжущее 32,5
рисовая лузга 35,0
минеральный наполнитель 3,1
ускоритель твердения 1,0
измельченная ботва сахарной свеклы 25,0
пенообразователь 3,4

В таблице 1 представлены эксплуатационные характеристики строительных блоков, полученных по известному и заявленному способам.

Таблица 1 – Эксплуатационные характеристики строительных блоков, полученных по известному и заявляемому способам
Наименование показателя Строительные блоки, полученные по известному способу Строительные блоки, полученные по заявляемому способу
Пример 1 Пример 2 Пример 3
Средняя плотность, кг/м3 170,0 – 200,0 240,0 – 290,0 255,0 – 274,0 270,0 – 323,0
Прочность на сжатие, МПа 0,15 – 0,2 0,25 – 0,3 0,26 – 0,31 0,28 – 0,33
Прочность на изгиб, МПа 2,0 – 3,0 3,0 – 4,0 3,5 – 4,5 4,0 – 5,0

Таким образом, предложенный способ изготовления строительных блоков позволяет повысить эксплуатационные характеристики, а именно среднюю плотность, прочность на сжатие и прочность на изгиб, и расширить ассортимент материалов для строительных блоков.

1. Способ изготовления строительных блоков, включающий смешивание вяжущего, рисовой лузги, минерального наполнителя и ускорителя твердения с последующим формованием, отвердением и сушкой, отличающийся тем, что смешивание ингредиентов осуществляют в три этапа, на первом этапе ускоритель твердения соединяют с пенообразователем и перемешивают в течение от 20 до 30 мин, на втором этапе полученный раствор соединяют с предварительно высушенной при температуре от 60 до 70°С в течение от 40 до 45 мин и измельченной до размера частиц от 0,8 до 1,0 мм ботвой сахарной свеклы и выдерживают в течение от 30 до 40 мин при непрерывном перемешивании, на третьем этапе полученную смесь соединяют со смесью вяжущего, рисовой лузги и минерального наполнителя и перемешивают в течение от 10 до 15 мин, при этом соотношение исходных компонентов в общей смеси составляет, мас. %:

вяжущее 32,5–34,7
рисовая лузга 30,0–35,0
минеральный наполнитель 3,1–3,3
ускоритель твердения 1,0–1,2
измельченная ботва сахарной свеклы 25,0–26,6
пенообразователь 3,4–4,2

2. Способ изготовления строительных блоков по п. 1, отличающийся тем, что в качестве вяжущего используют смесь цемента и гипса строительного, взятых в соотношении 1:1.

3. Способ изготовления строительных блоков по п. 1, отличающийся тем, что в качестве минерального наполнителя используют кремнезем.

4. Способ изготовления строительных блоков по п. 1, отличающийся тем, что в качестве пенообразователя используют жидкое мыло.

5. Способ изготовления строительных блоков по п. 1, отличающийся тем, что в качестве ускорителя твердения используют водный раствор хлорида кальция с плотностью 1,1–1,3 г/см3.



 

Похожие патенты:

Изобретение относится к области строительства и ремонта панельных жилых домов, а именно к способам для утепления и герметизации швов между панелями. Техническим результатом является обеспечение герметизации и утепления межпанельных швов.

Изобретение относится к комбинированным теплоизоляционным системам и способу их сооружения. Комбинированная теплоизоляционная система, имеющая изоляционный слой, необязательно армирующий слой, нанесенный на изоляционный слой, и наружный слой, нанесенный на изоляционный слой или на армирующий слой при его наличии, отличающаяся тем, что наружный слой содержит композиционные частицы, которые содержат по меньшей мере один органический полимер в качестве органической полимерной фазы и по меньшей мере одно неорганическое твердое вещество, частицы которого распределены в органической полимерной фазе, при этом массовая доля неорганического твердого вещества составляет от 15 до 40 мас.% в пересчете на общую массу органического полимера и неорганического твердого вещества в композиционной частице, а размер композиционных частиц составляет от 5 до 5000 нм.

Изобретение относится к стеновым блокам для стеновой конструкции, имеющим самонесущую конструкцию. Стеновой блок для образования стеновой конструкции содержит изоляционный материал и вертикальные несущие перегородки, проходящие от одной продольной стороны стенового блока к другой его продольной стороне.
Изобретение относится к производству строительных материалов, используемых для возведения стен гражданских и промышленных объектов. Строительный блок имеет декоративный облицовочный слой и основной слой, соединяющиеся за счет естественной адгезии минеральных вяжущих, входящих в состав бетонов каждого слоя.

Изобретение относится к применению водной многостадийной полимерной дисперсии, полученной путем радикально инициируемой водной эмульсионной полимеризации, содержащей мягкую и жесткую фазы с соотношением жесткой фазы к мягкой фазе 25-95 мас.% к 75-5 мас.%, причем температура стеклования (Tg) мягкой фазы, полученной на первой стадии, составляет от -30 до 0°C и жесткой фазы, полученной на второй стадии - от 20 до 60°C, и содержащей звенья по меньшей мере одного мономера общей формулы (I), в которой n означает число от 0 до 2, R1, R2, R3 независимо друг от друга означают водород или метильную группу, X означает кислород или NH, и Y означает водород, щелочной металл или NH4+, для нанесения покрытий на профилированные металлические кровельные элементы.

Изобретение относится к области строительства, а именно к способам изготовления неоднородных строительных блоков и может быть использовано в качестве несущего и отделочного элемента при возведении зданий и сооружений различного назначения с облицовкой фасада из природного или искусственного камня. Способ изготовления фасадных блоков включает подготовку несущих строительных блоков, выпиливание облицовочных плит из натурального или искусственного камня и их фиксацию на фасадной стороне блоков.

Изобретение относится к строительству, а именно к многослойным строительным элементам, содержащим теплоизоляционный слой. Многослойный строительный элемент включает в себя внешние элементы и размещенный между ними теплоизоляционный слой.

Изобретение относится к возведению несущих и ограждающих конструкций из высокопрочного бетона и может быть использовано в гражданском и промышленном строительстве. Технический результат - повышение прочности железобетонной конструкции.

Изобретение относится к области строительства, в частности к комплектам строительных элементов в виде готовых строительных блоков для сооружения несущих стен и перегородок зданий, и может быть использовано для экономичного и экологичного строительства быстровозводимых объектов малой этажности с высокой несущей способностью стен и перегородок, без применения связующих материалов и грузоподъемных механизмов, без привлечения бригады квалифицированных строителей и целиком из однотипных строительных блоков с унифицированными узлами сочленения.

Изобретение относится к области строительства. Строительный модуль сборной ограждающей конструкции здания включает теплообменный блок каналов рекуперации газовоздушных выбросов, а также содержит плоский конструкционный элемент из стекломинерального листового композита с цементным связующим, конструкционный утеплитель, в качестве которого применен пено-газобетон с холодным (неавтоклавным) отверждением, и слои легкого утеплителя с малым удельным весом, например маты из каменной ваты.

Изобретение относится к области строительства, а именно к легким металлическим профилям, предназначенным для формирования каркаса строительной конструкции. Технический результат изобретения заключается в обеспечении возможности возведения надежной строительной конструкции с наименьшей трудоемкостью, который достигается за счет того, что профиль для строительных конструкций, содержит, по сути, нижнюю полку и боковые стенки, при этом края боковых стенок выполнены загнутыми, образуя борта, выполняющие роль ребер жесткости.
Наверх