Источник рентгеновского излучения с циклотронным авторезонансом

Устройство относится к электронной и ускорительной технике, в частности к непрерывным ускорителям электронов - источникам тормозного рентгеновского излучения для промышленного применения, например, в области радиационной обработки пищевых продуктов, пластических материалов и стерилизации медицинского оборудования. Технический результат - повышение мощности тормозного рентгеновского излучения. Источник рентгеновского излучения с циклотронным авторезонансом состоит из электронной пушки, резонатора с ламелями и емкостным зазором, осуществляющим преобразование энергии подводимых СВЧ-колебаний в энергию циклотронного вращения электронов, секций магнитной системы, мишени, расположенной за резонатором, на которую осаждается электронный пучок, и окна вывода рентгеновского излучения. 1 ил.

 

Предлагаемое устройство относится к электронной и ускорительной технике, в частности к непрерывным ускорителям электронов - источникам тормозного рентгеновского излучения для промышленного применения, например, в области радиационной обработки пищевых продуктов, пластических материалов и стерилизации медицинского оборудования.

Традиционные источники рентгеновского излучения (рентгеновские трубки) генерируют пучки с энергией в диапазоне 50-150 КэВ (мягкие рентгеновские лучи). В этих источниках электроны ускоряются стационарным электрическим полем до тех пор, пока не столкнутся с термостойкой мишенью. Эти рентгеновские источники требуют высокого напряжения питания, которые являются громоздкими и тяжелыми. Значительно снизить уровень напряжения питания позволяет применение высокочастотного принципа ускорения электронов.

Во многих ускорителях электронов промышленного применения, использующихся в установках радиационной обработки материалов, применяется способ ускорения электронов, сгруппированных в электронные сгустки, в резонансных структурах с продольным высокочастотным электрическим полем [1]. Принципиальные ограничения, возникающие при применении подобных структур, связаны с нелинейным характером сил пространственного заряда, приводящих к проблемам захвата и удержания электронов в ускоряющих фазах продольного электрического поля электромагнитной волны, и, как следствие, к необходимости резкого уменьшения плотности пространственного заряда и, соответственно, тока электронного пучка до сотых и тысячных долей ампера.

В поперечно-волновых устройствах СВЧ с циклотронным резонансом используется взаимодействие электронного пучка с поперечным высокочастотным электрическим полем резонатора в резонансном магнитном поле внешней магнитной системы. В результате возбуждается циклотронное вращение всего электронного пучка без образования электронных сгустков. При этом плотность пространственного заряда пучка не модулируется и остается на начальном уровне. В резонаторе поперечное электрическое высокочастотное поле возбуждается между двумя ламелями, расположенными вдоль оси резонатора и образующими конденсаторный зазор, в котором распространяется электронный пучок. Внешняя магнитная система обеспечивает циклотронное вращение электронов с частотой, совпадающей с частотой высокочастотного поля. В результате взаимодействия электронов с высокочастотным полем резонатора и магнитным полем внешней системы энергия СВЧ источника, возбуждающего резонатор, преобразуется в кинетическую энергию вращательного движения электронного пучка на циклотронной частоте.

На принципах поперечного взаимодействия электромагнитного поля с электронным пучком создан широкий класс современных СВЧ устройств, включающий как электроннолучевые параметрические и электростатические усилители, циклотронные защитные устройства, лампы с бегущей циркулярно-поляризованной волной, циклотронные преобразователи энергии (ЦПЭ) и ряд других, которые можно считать аналогами предлагаемой конструкции [2-6]. Необходимо отметить высокую эффективность поперечного взаимодействия электромагнитного поля с электронным пучком - в циклотронных преобразователях энергии был получен КПД более 80% при уровне входной СВЧ мощности 10 киловатт [7].

В модели ускорителя электронов [8], состоящего из магнитной системы, формирующей магнитное поле, электронной пушки, формирующей электронный пучок, резонатора с линейно поляризованным поперечным высокочастотным электрическим полем и области спадающего магнитного поля, преобразование энергии внешнего СВЧ сигнала в энергию вращательного движения электронов на частоте циклотронного резонанса (В0 - индукция магнитного поля, е, m - соответственно заряд и масса ускоряемой частицы) осуществляется в постоянном однородном на длине резонатора магнитном поле В0. Однако постоянство магнитного поля В0 существенно ограничивает возможности такого ускорителя из-за релятивистского возрастания массы электрона и выхода электронов из условий циклотронного резонанса в конце резонатора.

В опубликованных работах [9, 10] теоретически изучены процессы авторезонансного ускорения электронов, распространяющихся вдоль статического и неоднородного магнитного поля, в высокочастотном поле цилиндрического резонатора с модой ТЕ11р (р=1, 2, 3,.). Полученные результаты были использованы в предложенном компактном источнике рентгеновского излучения [11], содержащем дополнительные компоненты, такие как: система связи для инжекции СВЧ-энергии, оконная система для поддержания вакуума в полости устройства, система защиты СВЧ-генератора от отраженных микроволн, система поддержания режима круговой поляризации моды ТЕ11р в полости резонатора, мишень с каналами охлаждения и ее позиционирования, а также окно для извлечения рентгеновских лучей.

В качестве прототипа предлагаемого устройства можно рассматривать компактный электровакуумный источник рентгеновского излучения с циклотронном авторезонансом [11], способный производить жесткое рентгеновское излучение с заявленной энергией выше 200 кэВ и с не меньшей интенсивностью, чем у традиционных источников рентгеновского излучения. В заявляемом источнике электроны, инжектированные в цилиндрический резонатор, ускоряются в СВЧ поле моды ТЕ11Р (р=1, 2, 3...) с линейной или круговой поляризацией. Однако поперечное сечение резонатора также может быть прямоугольным с модой ТЕ10р, где р=1,2,3….

Для поддержания режима авторезонанса циклотронного движения электронов по спиральным траекториям с СВЧ полем внутри резонатора вдоль его длины формируется неоднородное статическое магнитное поле, интенсивность которого возрастает вдоль оси резонатора в соответствие с генерируемой энергией инжекции пучка и амплитудой СВЧ-поля. Электронный пучок ускоряется в условиях циклотронного авторезонанса в резонаторе вплоть до его попадания в мишень, расположенной в концевой области резонатора таким образом, что электроны, двигающиеся по спиральным траекториям с возрастающим радиусом, сталкиваются с мишенью, расположенной внутри полости резонатора. В результате столкновения энергия ускоренного движения электронов преобразуется в энергию тормозного рентгеновского излучения, которое выводится через вакуумное окно на боковой поверхности резонатора.

Однако заявленная в [11] энергия жесткого рентгеновского излучения (выше 200 кэВ при потенциалах инжекции пучка 8-10 кВ) не может быть получена, т.к. проведенные в [6, 7] расчеты процессов циклотронного ускорения электронов не учитывали их взаимодействия с высокочастотной компонентой СВЧ поля в резонаторе, действие которой становится значительным при возрастании скоростей циклотронного вращения электронов до релятивистских значений. В результате в концевой области резонатора, где скорости электронов достигают релятивистских значений, а поперечная высокочастотная магнитная компонента максимальна, действие магнитной силы на вращающиеся электроны будет направлено против их осевого движения, что может приводить к их торможению, вплоть до полной остановки и повороту электронов [12].

Существенно снизить (в 5-10 раз) влияние этого эффекта возможно благодаря применению другого типа резонатора - резонатора с ламелями и емкостным зазором, используемого в предлагаемой конструкции рентгеновского источника с циклотронным авторезонансом по п. 1.

Подобный резонатор использовался ранее в вышеупомянутом циклотронном преобразователе (ЦПЭ) [4]. Однако в [4] предлагается устройство для получения энергии постоянного тока в результате преобразования СВЧ энергии, возможность же получения рентгеновского излучения с использованием резонатора с ламелями и емкостным зазором до настоящего времени не рассматривалась, что показывает техническую новизну предлагаемой конструкции.

Предлагается рентгеновский источник с циклотронным авторезонансом, в котором СВЧ энергия от внешних источников последовательно преобразуется в энергию циклотронного вращения электронов, а затем в энергию рентгеновского тормозного излучения в результате соударения ускоренных электронов с поверхностью цилиндрической мишени, расположенной за резонатором.

Схема предлагаемого рентгеновского источника с циклотронным авторезонансом показана на рис. 1.

Предлагаемое по п. 1 устройство содержит электронную пушку (1), формирующую электронный пучок (2), распространяющийся в емкостном зазоре резонатора (3), образуемом плоскими ламелями (4). Электрическая компонента СВЧ поля в таком резонаторе сосредоточена, в основном, в емкостном зазоре между ламелями, а магнитная компонента - в областях вокруг ножек ламелей (5), через которые не проходит электронный пучок. Под действием СВЧ поля в зазоре резонатора и резонансного магнитного поля, создаваемого магнитной системой (10а и 106), электроны пучка приобретают циклотронное вращение с радиусом, нарастающим по мере продвижения электронов вдоль резонатора. При этом энергия СВЧ колебаний, вводимых в резонатор через устройство ввода (6), преобразуется в кинетическую энергию циклотронного вращения электронов пучка, которая может существенно (в 10-12 раз [7]) превосходить начальную энергию инжекции электронов. В процессе ускорения электронов скорости их циклотронного вращения могут достигать релятивистских значений, что приводит к увеличению массы электронов и нарушению условий циклотронного резонанса. Для сохранения условий циклотронного резонанса вдоль всей длины резонатора магнитная система содержат несколько секций (10а, 10б), обеспечивающих увеличение магнитного поля по мере роста релятивистской массы электронов (циклотронный авторезонанс). Выходящий из резонатора электронный пучок подвергается воздействию магнитного поля, создаваемого концевыми секциями магнитной системы (10в), и осаждается на боковую поверхность цилиндрической (или конической) мишени из тугоплавких материалов (7), охлаждаемой с помощью системы охлаждения (8). В силу циклотронного вращения электронов пучка «пятно оседания» распределяется по всей боковой поверхности мишени, что исключает необходимость в устройствах для развертки электронного пучка, применяемых в линейных ускорителях. В результате соударения электронов с мишенью (7) генерируется тормозное рентгеновское излучение, выводимое из устройства через окно (9). Площадь соударения электронов с мишенью и диаграмма направленности рентгеновского излучения может оптимизироваться магнитным полем концевых секций магнитной системы (10в).

Техническим результатом предлагаемого устройства является возможность разработки источника рентгеновского излучения импульсного или непрерывного действия с энергией электронов 150-250 КэВ, током пучка 0,5-1 А и мощности тормозного рентгеновского излучения 5-10 кВт.

Патентуется устройство:

П.1 Источник рентгеновского излучения с циклотронным авторезонансом, состоящий из электронной пушки, формирующей электронный пучок, резонатора с ламелями и емкостным зазором, осуществляющим преобразование энергии подводимых СВЧ колебаний в энергию циклотронного вращения электронов, секций магнитной системы, обеспечивающих циклотронный авторезонанс вдоль длины резонатора по мере нарастания релятивистской массы электронов, мишени, на которую осаждается электронный пучок, и окно вывода рентгеновского излучения,

отличающийся тем, что

- мишень расположена за резонатором и имеет форму полого цилиндра или полого конуса, на внутреннюю поверхность которого осаждается электронный пучок, а на внешней поверхности которого расположена система охлаждения,

- окно вывода рентгеновского излучения расположено в торце цилиндрической (или конической) мишени,

- имеются концевые секции магнитной системы, создающие магнитное поле, обеспечивающее оседание электронов на мишень, причем в силу циклотронного вращения электронов «пятно оседания» распределяется по всей боковой поверхности мишени, а площадь соударения электронов с мишенью и диаграмма направленности рентгеновского излучения может оптимизироваться магнитным полем концевых секций магнитной системы.

Источники информации

1. Лебедев А.Н., Шальнов А.В. Основы физики и техники ускорителей. М. 1981 г.

2. Банке В. А. Поперечные волны электронного потока в микроволновой электронике. // УФН, т. 175, №9. 2003 г.

3. Банке В.А., Зайцев А.А., Лопухин В.М., Саввин В.Л. К анализу физических процессов в переходной области циклотронного преобразователя энергии // Радиотехника и электроника, 1978, том 23, №6, с. 1217.

4. Будзинский Ю.А. и др. Патент RU 2119691

5. Банке В.А., Коннов А.В., Саввин В.Л. ЛБВ с циркулярно поляризованным полем // Электронная техника, сер. Электроника СВЧ, 1987, №4(398), с. 20.

6. В.Л. Саввин, Г.М. Казарян, А.В. Коннов, Д.А. Михеев, А.В. Пеклевский Пространственный заряд и рекуперация энергии в циклотронном преобразователе // Журнал радиоэлектроники, 2011, №11, с. 1.

7. Банке В.А., Лопухин В.М., Росновский В.К., Саввин В.Л., Сигорин К.И. О наземном приемно-преобразующем комплексе солнечных космических энергосистем // Радиотехника и электроника, 1982,том 27, №5, с. 1014.

8 Никитин А.П., Коннов А.В., Милорадова Т.В., Солдатова Е.К.. // Ускоритель электронов, Патент RU 128057 U1, 02.04.2012.

9. Dougar-Jabon V., Orozco Е., Umnov А. // PHYSICAL REVIEW SPECIAL TOPICS -ACCELERATORS AND BEAMS 11, 041302 (2008).

10. Dugar-Zhabon, Orozco E., Three-Dimensional Particle-In-Cell Simulation of Spatial Autoresonance Electron-Beam Motion // IEEE Transaction on Plasma Science, 38 No. 10, (2010) 2980-2984.

11. Dugar-Zhabon, Orozco E., // US Patent for Compact self-resonant X-ray source (Patent US 9,666,403 B2)

12. Саввин В.Л., Казарян Г.М., Михеев Д.М., Пеклевский А.В., Шуваев И.И. О влиянии магнитных компонент высокочастотного поля при пространственном циклотронном авторезонансе // Изв. РАН. Серия физическая, 2019, т. 83, №1, с. 54.

Источник рентгеновского излучения с циклотронным авторезонансом, состоящий из электронной пушки, формирующей электронный пучок, резонатора с ламелями и емкостным зазором, осуществляющим преобразование энергии подводимых СВЧ-колебаний в энергию циклотронного вращения электронов, секций магнитной системы, обеспечивающих циклотронный авторезонанс вдоль длины резонатора по мере нарастания релятивистской массы электронов, мишени, на которую осаждается электронный пучок, и окна вывода рентгеновского излучения, отличающийся тем, что

- мишень расположена за резонатором и имеет форму полого цилиндра или полого конуса, на внутреннюю поверхность которого осаждается электронный пучок, а на внешней поверхности которого расположена система охлаждения,

- окно вывода рентгеновского излучения расположено в торце цилиндрической или конической мишени,

- имеются концевые секции магнитной системы, создающие магнитное поле, обеспечивающее оседание электронов на мишень, причем в силу циклотронного вращения электронов «пятно оседания» распределяется по всей боковой поверхности мишени, а площадь соударения электронов с мишенью и диаграмма направленности рентгеновского излучения могут оптимизироваться магнитным полем концевых секций магнитной системы.



 

Похожие патенты:

Изобретение относится к способу генерации электронного пучка для электронно-пучковой обработки поверхности металлических материалов. Используют источник электронов с плазменным катодом с сеточной стабилизацией границы эмиссионной плазмы и плазменным анодом с открытой границей плазмы, генерируют ток электронного пучка амплитудой (5-500 А), при энергии электронов (5-30 кэВ), с диаметром пучка (5-100 мм), и плотности энергии пучка (5-200 Дж/см2), плотность мощности которого варьируют в диапазоне (2·103–106 Вт/см2) в течение импульса микро- и субмиллисекундной длительности (10-1000 мкс) в режиме его одиночных импульсов путем амплитудной и широтной модуляции пучка, пригодного для управления скоростью нагрева, плавления и остывания поверхностного слоя металлических материалов.

Устройство предназначено для повышения мощности импульса тормозного излучения. Устройство работает в мегавольтном диапазоне напряжений, повышение мощности импульса тормозного излучения обеспечивается путем обострения в вакуумном диоде (ВД) ускорителя электронов импульса ускоряющего напряжения за счет увеличения его амплитуды и сокращения его длительности.

Изобретение относится к ускорительной технике и может быть использовано при разработке циклических ускорителей с практически постоянным радиусом орбиты, например индукционных синхротронов с постоянным во времени магнитным полем. Способ формирования равновесных траекторий частиц в циклическом ускорителе с постоянным радиусом орбиты заключается в том, что для формирования орбит частиц и сохранения радиуса орбиты частиц постоянным при их ускорении производят отражение частиц полями магнитных диполей и формируют жесткую фокусировку частиц.

Изобретение относится к ускорительной технике и может быть использовано при разработке индукционных циклических ускорителей с практически постоянным радиусом орбиты и постоянным во времени магнитным полем. Индукционный, не резонансный способ ускорения решает задачу синхронизации в широком диапазоне скоростей ускоряемых частиц и ускоряющего электрического поля путем изменения частоты повторения индукционных импульсов.

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности и может быть использовано при создании субнаносекундных ускорителей электронов мегавольтного диапазона. Данные ускорители широко применяются для определения временного разрешения наносекундных детекторов импульсов электронного и тормозного излучения, а также скоростных измерительных каналов, получения ультракоротких световых вспышек и т.д.

Изобретение относится к ускорительной технике и может быть использовано для решения научных и прикладных задач. В предложенном способе ускоряют макрочастицу до сверхвысоких скоростей, а ударник, разогнанный до скоростей удара от 2.0 до 7.0 км/с, направляют на мишень, при ударной перфорации которой формируют струи фрагментов, головные части которых используют в качестве ускоренных макрочастиц.

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности. Формирователь содержит формирующую и передающею коаксиальные линии, обостряющий и срезающий разрядные зазоры, формирующая линия подключена к источнику наносекундных высоковольтных импульсов, при этом между формирующей и передающей линиями дополнительно введена вторая формирующая линия с образованием второго обостряющего разрядного зазора.

Изобретение относится к способу вывода частиц из кольцевых ускорителей и в первую очередь из кольцевых ускорителей с постоянным магнитным полем и практически постоянным радиусом. Для вывода частиц используют отражение частиц полями постоянных магнитов, в котором угол отражения равен углу падения и не зависит от скорости (энергии и импульса) частиц, при этом глубина проникновения частиц в поле с индукцией Bz зависит от импульса (энергии) частиц и связана соотношением где: Р - полный импульс частиц, Pcosa - составляющая импульса вдоль оси у, Bz и Bz,cp - индукция и средняя индукция поля магнита, q - заряд частицы, уm - глубина проникновения частиц в поле магнита.

Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц, которые используют байпасные системы. Предлагаемый способ решает задачу уменьшения потерь частиц при медленном выводе с использованием байпасной системы пучка и уменьшения искажений импульсного магнитного поля экранами системы вывода пучка.

Изобретение относится к области и к способу фокусировки пучков заряженных частиц. В заявленном способе формируют систему магнитных полей, поочередно отклоняют ими частицы к оси и от оси системы, осуществляя таким образом жесткую фокусировку частиц, отклонение частиц проводят полями диполей с разной полярностью магнитной индукции, результирующее действие которых приводит к отклонению частиц только в одном из взаимно перпендикулярных направлений.

Изобретение относится к импульсным высокояркостным источникам излучения в диапазоне длин волн 0.4-120 нм. Источник излучения содержит вакуумную камеру (1) с областью импульсной излучающей плазмы и средства подавления загрязнений (5), включающие в себя два или более кожухов (6), предназначенных для формирования свободных от загрязнений гомоцентрических пучков (7) коротковолнового излучения, направленных из области импульсной излучающей плазмы (2) к оптическому коллектору (3), Поверхность каждого кожуха (6) содержит две первые грани (8), ориентированные в радиальных направлениях к области импульсной излучающей плазмы и параллельные выделенному направлению, например вертикали.
Наверх