Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов

Использование: для измерения высоты вертикально ориентированных плоских дефектов (трещин) в стеклокерамических материалах элементов конструкций летательных аппаратов. Сущность изобретения заключается в том, что ультразвуковыми волнами при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний в направлении, совпадающем с плоскостью дефекта, и принимают отраженные донной поверхностью изделия ультразвуковые колебания, с целью увеличения точности измерения вычисляют отношение амплитуды отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через вертикально ориентированный плоскостной дефект (трещину) элемента конструкции летательного аппарата, к амплитуде отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через область элемента конструкции летательного аппарата без дефекта, для проведения измерений применяются ультразвуковые волны в диапазоне частот от 10 МГц до 20 МГц. Технический результат: повышение точности измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов. 4 ил.

 

Изобретение относится к области неразрушающего контроля сплошности стеклокерамических материалов и служит для измерения высоты вертикально ориентированных плоских дефектов (трещин) с целью определения возможности их механической выборки.

Известен способ измерения условной высоты вертикально ориентированных плоских дефектов (трещин) в сварном соединении металлов ультразвуковым методом (ГОСТ Р 55724-2013. Контроль неразрушающий. Соединения сварные). Условную высоту трещины ΔН определяют как разность измеренных значений глубины расположения трещины 2 в крайних положениях ультразвукового преобразователя 3, перемещаемого в плоскости падения ультразвукового луча. Условную высоту трещины 2 измеряют в сечении сварного соединения 1, где эхо-сигнал от трещины 2 имеет наибольшую амплитуду 4, а также в сечениях, расположенных на расстояниях, указанных в технологической документации на контроль. Точность измерения высоты трещины 2 в данном методе определяется точностью положений ΔХ ультразвукового преобразователя 3 и точностью измерения уровня амплитуды ультразвукового сигнала, принятого за начало и окончание трещины 2.

Реализация данного способа иллюстрируется на фиг.1. Схема измерения условной высоты трещины в сварном соединении по ГОСТ Р 55724-2013 «Контроль неразрушающий. Соединения сварные», где ΔН – условная высота трещины, ΔХ – расстояние между крайними положениями ультразвукового преобразователя.

Недостаток указанного способа измерения высоты трещины заключается в условном (неточном) измерении высоты трещины, а также применение данного способа для контроля толстостенных сварных соединений.

Известен способ измерения высоты вертикально ориентированных плоских дефектов (трещин) при помощи дифракции первого рода ультразвуковых волн на краю трещины в металлах (Н.П. Алешин, В.П. Белый и др. Метод акустического контроля металлов. – М. Машиностроение, - 1989, 456 с.). При падении поперечной ультразвуковой волны 5 от наклонного ультразвукового преобразователя 6, расположенного на металлическом изделии 1, на трещину 2 вокруг нее могут возникать волны различного происхождения. В соответствии с первым законом дифракции дифракционное поле образуется только теми лучами, которые падают на острый край, следовательно, чем больше высота трещины 2, тем большая часть ультразвуковой волны поперечной 5 будет переходить в ультразвуковую волну продольную 4. Таким образом, измеряя амплитуду ультразвуковой волны продольной 4, дифрагированной из ультразвуковой волны поперечной 5, принимая ее при помощи прямого преобразователя 3, можно определить высоту трещины 2.

Реализация данного способа иллюстрируется на фиг.2. Функциональная схема измерения высоты трещины при помощи дифракции поперечной ультразвуковой волны по Н.П. Алешину, В.П. Белому и др. «Метод акустического контроля металлов».

Недостаток данного способа заключается в том, что требуется наличие двух ультразвуковых преобразователей – излучающего наклонного ультразвукового преобразователя и приемного прямого ультразвукового преобразователя. Кроме того, необходимо точно позиционировать приемный ультразвуковой преобразователь над трещиной, расположенной с противоположной стороны изделия, что сделать достаточно трудно.

Наиболее близким по технической сущности (прототипом) является ультразвуковой способ контроля изделий на наличие вертикально ориентированных плоскостных дефектов (А. с. СССР №1441299 А1, МПК G01N 29/04, опубл. 30.11.1988), в котором при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний (волн) в направлении, совпадающем с плоскостью вертикально ориентированного плоскостного дефекта, принимают этим же ультразвуковым преобразователем отраженные донной поверхностью ультразвуковые волны, измеряют их параметры и с их помощью определяют характеристики дефекта. С целью повышения точности определения высоты вертикально ориентированного плоскостного дефекта, в качестве измеряемого параметра используют разность времен между временем распространения отраженных от донной поверхности продольных ультразвуковых колебаний и временем распространения трансформированных на дефекте продольных ультразвуковых колебаний. Высоту вертикально ориентированного плоскостного дефекта определяют по измеренной разности времен прихода ультразвуковых колебаний. Также по амплитуде отраженных донной поверхностью изделия трансформированных колебаний определяют наличие дефекта.

Недостатком указанного способа, взятого в качестве прототипа, является неточное измерение разности времени распространения отраженных от донной поверхности продольных ультразвуковых колебаний и времени распространения, трансформированных на дефекте продольных ультразвуковых колебаний в тонких изделиях, из-за высокой скорости продольных ультразвуковых колебаний в стеклокерамических материалах и их малой толщины.

Техническим результатом предполагаемого изобретения является повышение точности измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов.

Указанный технический результат достигается тем, что предложен ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов, заключающийся в том, что ультразвуковыми волнами при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний в направлении, совпадающем с плоскостью дефекта, и принимают отраженные донной поверхностью изделия ультразвуковые колебания, отличающийся тем, что с целью увеличения точности измерения вычисляют отношение амплитуды отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через вертикально ориентированный плоскостной дефект (трещину) элемента конструкции летательного аппарата, к амплитуде отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через область элемента конструкции летательного аппарата без дефекта, для проведения измерений применяются ультразвуковые волны в диапазоне частот от 10 МГц до 20 МГц.

Пример реализации предполагаемого способа иллюстрируется на фиг. 3, 4.

На фиг. 3а представлена функциональная схема измерения высоты ориентированных плоскостных дефектов при помощи дифракции продольной ультразвуковой волны.

В предложенном способе измерения высоты вертикально ориентированных плоскостных дефектов (трещин) 2 ультразвуковые продольные волны посредством прямого совмещенного ультразвукового пьезоэлектрического преобразователя 3 вводят в стеклокерамический материал элемента 1 конструкции летательного аппарата, причем прямой совмещенный ультразвуковой пьезоэлектрический преобразователь 3 фиксируется над вертикально ориентированным плоскостным дефектом (трещиной) 2, ультразвуковая продольная волна 4 распространяется вдоль вертикально ориентированного плоскостного дефекта 2, претерпевает дифракцию, отражается от донной поверхности элемента 1 конструкции летательного аппарата и возвращается по траектории 5 на этот же прямой совмещенный ультразвуковой пьезоэлектрический преобразователь 3. На ультразвуковом дефектоскопе 6, подключенном к прямому совмещенному ультразвуковому пьезоэлектрическому преобразователю 3, фиксируется амплитуда ультразвуковой продольной волны, возвратившейся по траектории 5.

Затем прямой совмещенный ультразвуковой пьезоэлектрический преобразователь 3 переставляется в бездефектную область (фиг. 3б) стеклокерамического материала элемента 1 конструкции летательного аппарата. На ультразвуковом дефектоскопе 6 фиксируется амплитуда продольной ультразвуковой волны, отраженной от донной поверхности по траектории 5. Вычисляется отношение амплитуды ультразвуковой продольной волны, прошедшей вдоль плоскостного дефекта и отраженной от донной поверхности (фиг. 3а), к амплитуде ультразвуковой волны прошедшей через бездефектную область (фиг. 3б) материала элемента 1 конструкции летательного аппарата и отраженной от донной поверхности.

На основании экспериментальных исследований построена графическая зависимость отношения амплитуд продольных ультразвуковых волн, прошедших через вертикально ориентированный плоскостной дефект и через бездефектный материал от высоты вертикально ориентированного плоскостного дефекта. При проведении экспериментов высота вертикально ориентированного плоскостного дефекта измерялась рентгеновским методом.

На фиг. 4 представлена графическая зависимость отношения амплитуд ультразвуковых волн от высоты вертикально ориентированного плоскостного дефекта, где

Атр – амплитуда ультразвуковой волны, прошедшей через стеклокерамический материал с вертикально ориентированный плоскостной дефект и отраженной от донной поверхности (ДБ);

А – амплитуда ультразвуковой волны, прошедшей через стеклокерамический материал и отраженной от донной поверхности (ДБ).

Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов, заключающийся в том, что ультразвуковыми волнами при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний в направлении, совпадающем с плоскостью дефекта, и принимают отраженные донной поверхностью изделия ультразвуковые колебания, отличающийся тем, что с целью увеличения точности измерения вычисляют отношение амплитуды отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через вертикально ориентированный плоскостной дефект - трещину элемента конструкции летательного аппарата, к амплитуде отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через область элемента конструкции летательного аппарата без дефекта, для проведения измерений применяются ультразвуковые волны в диапазоне частот от 10 МГц до 20 МГц.



 

Похожие патенты:

Использование: для определения модуля упругости стеклопластиков при ультразвуковом неразрушающем контроле. Сущность изобретения заключается в том, что излучают импульсы ультразвуковых колебаний излучателем в плоскости армирования стеклопластика и по нормали к плоскости армирования, принимают приемником импульсы, прошедшие в стеклопластике, измеряют скорости их распространения в плоскости армирования стеклопластика, при этом измеряют скорости продольных ультразвуковых волн, распространяющихся по нормали к плоскости армирования стеклопластика, на частотах от 2 до 20 МГц с помощью двух соосно расположенных на противоположных поверхностях пьезоэлектрических преобразователей при двустороннем доступе или с помощью одного пьезоэлектрического преобразователя при одностороннем доступе, после чего определяют плотность стеклопластика по экспериментально построенной регрессионной зависимости плотности материала от скорости ультразвуковых волн в направлении нормали, при этом скорости ультразвуковых волн в плоскости армирования стеклопластика измеряют на частотах от 0,06 до 2 МГц с помощью двух пьезоэлектрических преобразователей, расположенных на противоположных поверхностях стеклопластика или на одной из них, после чего определяют модуль упругости стеклопластика по определенному математическому выражению.

Изобретение относится к области железнодорожной техники и может использоваться для проверки работоспособности мобильных средств дефектоскопии в широком диапазоне реализуемых скоростей контроля. Способ оценки работоспособности искательной системы заключается в перемещении по рельсам искательной системы, содержащей один или несколько электроакустических преобразователей, периодическом излучении в контролируемые рельсы ультразвуковых зондирующих импульсов, приеме отраженных от подошвы рельсов ультразвуковых донных сигналов, регистрации их на дефектограмме, оценке их параметров, по результатам которых судят о работоспособности искательной системы.

Использование: для акустического волноводного неразрушающего контроля труб. Сущность изобретения заключается в том, что осуществляют перемещение диагностического устройства вдоль трубопровода, периодически возбуждают ультразвуковые колебания.

Использование: для наружной диагностики технологических трубопроводов, перемычек и участков трубопроводов, не подлежащих внутритрубной диагностике, а также для контроля сварных швов при строительстве и ремонте участков трубопроводов. Сущность изобретения заключается в том, что за счет автоматизации процесса диагностики трубопровода и использования жесткой механической конструкции с лазерной и ультразвуковой измерительными системами возможно без дополнительных операций по переустановке и позиционированию диагностического комплекса осуществлять измерение внешней геометрии трубопровода и выполнять неразрушающий контроль наружной поверхности, основного металла трубопровода, сварных швов и околошовной зоны, производить обработку полученной диагностической, координатной и телеметрической информации от ультразвуковой и лазерной измерительных систем, энкодеров, оптических датчиков слежения, и с помощью оператора определять тип, положение и геометрические параметры наружных, внутренних и внутристенных дефектов в режиме реального времени.

Использование: для обнаружения и локализации повреждений в тонкостенных конструкциях. Сущность изобретения заключается в том, что на неповрежденную конструкцию с помощью фиксирующего устройства монтируют раму с 8-ю пьезоэлектрическими преобразователями (ПП), установленными в вершинах квадрата и в серединах его сторон; с помощью 4-х обратимых ПП, расположенных в серединах сторон квадрата, в конструкции поочередно производят возбуждение цугов волн Лэмба; с помощью указанных обратимых ПП, а также указанных ПП в вершинах квадрата, поочередно принимают прошедшие через конструкцию сигналы, эти сигналы регистрируют и запоминают с помощью цифровой компьютеризованной системы; затем раму с ПП демонтируют; монтаж и демонтаж рамы с ПП и запись сигналов повторяют несколько раз и по разностным сигналам производят формирование гистограмм параметра дискриминации, необходимых для выбора порога обнаружения дефекта.

Использование: для высокоскоростной ультразвуковой дефектоскопии длинномерных объектов. Сущность изобретения заключается в том, что осуществляют периодическое излучение в объект контроля ультразвуковых зондирующих сигналов при перемещении электроакустического преобразователя вдоль объекта, прием отраженных ультразвуковых сигналов, измерение их параметров, по результатам которых судят о наличии дефектов, при этом используют выпукло-вогнутую пьезопластину с широкой диаграммой направленности.

Использование: для изготовления эталонного образца (30) из пластмассы, армированной волокном (ПАВ), для моделирования пористости (14) слоя для неразрушающего испытания конструктивных элементов из ПАВ. Сущность изобретения заключается в том, что осуществляют следующие этапы, на которых: i) изготавливают первую часть посредством: а) размещения первого слоя ПАВ с выемкой; b) размещения по меньшей мере одного второго слоя ПАВ на первом слое ПАВ; с) предварительного отверждения структуры из первого и второго слоев из ПАВ для получения первой части; ii) изготавливают вторую часть посредством: а) размещения дополнительных слоев ПАВ; b) предварительного отверждения структуры из дополнительных слоев ПАВ для получения второй части; iii) соединяют первую часть со второй частью, причем выемка на первой части обращена ко второй части; и iv) отверждают структуру из первой части и второй части, причем на выемке в первом слое ПАВ образуется пористость слоя.

Использование: для изготовления эталонного образца из волоконно-пластмассового композита (ВПК) для имитации расслоения для неразрушающего испытания конструктивных элементов из ВПК. Сущность изобретения заключается в том, что осуществляют следующие этапы, на которых: i.

Использование: для неразрушающего контроля качества клеевых соединений разнородных деталей. Сущность изобретения заключается в том, что калибруют ультразвуковой дефектоскоп по образцам, имитирующим многослойное соединение «керамика - клеевое соединение – ПКМ (полимерный композитный материал) - клеевое соединение - металл» с искусственно созданными дефектами-непроклеями, при этом производят корректировку амплитуды реверберационных колебаний на объекте контроля до уровня реверберационных колебаний на образце, далее излучают в клеевые соединения многослойного соединения ультразвуковые волны, принимают реверберационные колебания при наличии дефекта-непроклея, затем корректируют диапазон развертки так, чтобы реверберационные колебания находились в пределах экрана дефектоскопа, далее анализируют диапазон развертки и делают заключение по признаку наличия реверберационных колебаний свидетельствующих о дефекте-непроклей многослойного клеевого соединения конструкции летательных аппаратов, кроме того для уточнения размеров найденного реверберационным методом дефекта-непроклея клеевого многослойного соединения применяют амплитудный теневой ультразвуковой метод при котором ультразвуковые волны введенные в многослойное клеевое соединение посредством прямого излучающего ультразвукового пьезоэлектрического преобразователя со стороны керамики фиксируются прямым приемным ультразвуковым пьезоэлектрическим преобразователем расположенным с противоположной стороны многослойного клеевого соединения при отсутствии дефекта-непроклея, либо не фиксируются при наличии дефекта-непроклея из-за их затенения расположенным на пути распространения ультразвуковых волн дефектом-непроклеем, при этом ультразвуковые волны формируется в диапазоне частот от 2,25 МГц до 3,5 МГц, а несоосность прямых излучающего и приемного ультразвуковых пьезоэлектрических преобразователей не должна превышать половину диаметра их пьезоэлементов.

Использование: для оценки работоспособности дефектоскопических средств при высокоскоростном контроле рельсов. Сущность изобретения заключается в том, что перемещают дефектоскопическое средство по рельсовым путям, периодически излучают в контролируемый рельс ультразвуковые зондирующие сигналы, выполняют прием отраженных ультразвуковых сигналов от конструктивных элементов рельсов и осуществляют их регистрацию, измерение параметров сигналов и их анализ, по результатам которого судят о работоспособности дефектоскопического средства, при этом оценку работоспособности производят на разных скоростях перемещения дефектоскопического средства, формируют номограмму зависимости усредненной оценки от скорости перемещения, по которой определяют предельную скорость контроля для конкретного участка рельсового пути.

Изобретение относится к области соединения деталей несущих и ограждающих конструкций. Технический результат заключается в возможности применения сплошного контроля болтов в процессе выполнения болтовых соединений за возможным ростом трещин. Способ выполнения монтажных соединений на высокопрочных болтах с контролируемым натяжением заключается в том, что болтовое соединение подготавливают и собирают на болт с использованием смазки для обеспечения акустического контакта, устанавливают преобразователь сигналов акустической эмиссии, а затем производят затяжку болтов, регистрируют сигналы акустической эмиссии и по результатам анализа полученных сигналов акустической эмиссии судят о качестве болтового соединения, согласно изобретению с помощью нагружающего устройства подают на болт испытательную нагрузку, на 5-10% превышающую заданное усилие натяжения, делают выдержку, в течение которой производят регистрацию сигналов акустической эмиссии, снижают нагрузку до требуемого усилия затяжки и фиксируют болтовое соединение гайкой, затягивая ее до тех пор, пока нагрузка, фиксируемая нагружающим устройством, не начнет снижаться. 4 ил.
Наверх