Способ определения параметров работы сердца и электронное устройство для его осуществления

Группа изобретений относится к медицинской технике, а именного к способу и носимому электронному устройству для определения параметров работы сердца. При исполнении способа формируют поток лазерного излучения. Поток лазерного излучения включает излучение от первой пары источников с различной длиной волны. Каждый из источников обеспечивают средством преобразования отраженного от тела человека лазерного излучения в электрические сигналы. Источники выполнены диодными. Один из источников обеспечивает длину волны от 540 нм до 550 нм, второй - от 560 нм до 570 нм. При этом одним из упомянутых источников обеспечивают продольную поляризацию, а вторым – поперечную. Формируют дополнительный поток лазерного излучения от второй пары диодных источников лазерного излучения. Вторая пара диодных источников обеспечивает длины волн от 520 нм до 528 нм и от 532 нм до 540 нм соответственно. Каждый источник второй пары обеспечивают средством преобразования лазерного излучения в электрические сигналы. При этом одним из упомянутых источников второй пары обеспечивают продольную поляризацию, а вторым – поперечную. Потоками облучают ткани участка тела человека. Преобразуют отраженное от тканей излучение в электрические сигналы, несущие информацию о параметрах работы сердца. На основе электрических сигналов определяют биопотенциалы сердца. Носимое электронное устройство содержит средства обработки электрических сигналов, несущих информацию о параметрах работы сердца, для осуществления способа. За счет источников лазерного излучения с различными длинами волн и продольной и поперечной поляризацией обеспечивается исключение влияния внешней засветки и получение, после математической обработки, более качественного общего сигнала путем сложения двух независимых кривых интенсивности отраженного сигнала, полученного от красных кровяных телец, имеющих различную пространственную ориентацию. 2 н. и 2 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к измерительной технике, в частности к носимым оптико-электронным устройствам для измерения параметров работы сердца и может быть использовано для получения информации об изменении биопотенциалов сердца человека.

Уровень техники

Из уровня техники известно большое количество средств для измерения биопотенциалов работы сердца человека.

В качестве наиболее близкого аналога выбрано известный способ для измерения параметров работы сердца, состоящий в облучении тканей тела человека лазерным излучением и преобразованием отраженного потока в электрические сигналы (CN102894965, опубликован 30.01.2013). Данное известное средство обладает недостаточной чувствительностью и точностью определения биопотенциалов сердца человека и не позволяет определить все пять пиков кардиограммы.

Сущность изобретения

Задача решаемая изобретением: обеспечение эффективного мониторинга за работой сердца и измерение параметров сердечной деятельности человека без нарушения привычного режима жизнедеятельности.

В ходе решения поставленной задачи обеспечивается достижение следующих технических результатов: повышение точности определения зубцов, сегментов и интервалов кардиограммы человека на протяжении длительного времени в ходе его обычной жизнедеятельности; одновременное фиксирование кардиографического отклика от тканей, обладающих различной чувствительностью к длине и/или поляризации лазерного излучения; обеспечение возможности интегрирования устройства в информационные системы на основе облачного хранения информации.

Указанные выше технические результаты достигаются тем, что формируют поток лазерного излучения, который включает излучение, по крайней мере, от двух источников с различной длиной волны, каждый упомянутый источник обеспечивают средством преобразования лазерного излучения в электрические сигналы, упомянутым потоком облучают ткани участка тела человека, преобразуют отраженное от тканей излучение в электрические сигналы, несущие информацию о параметрах работы сердца, и на их основе определяют биопотенциалы сердца.

Указанные выше технические результаты достигаются также тем, что упомянутым потоком облучают ткани тела человека в области правого или левого запястий.

Указанные выше технические результаты достигаются также тем, что упомянутые источники лазерного излучения выполняют диодными, при этом одним их них обеспечивают длину волны от 540нм до 550нм, а вторым - от 560нм до 570нм, при этом одним из упомянутых источников обеспечивают продольную поляризацию, а вторым – поперечную.

Указанные выше технические результаты достигаются также тем, что полученные электрические сигналы, несущие информацию о параметрах работы сердца, направляют в удаленный сервер, в котором осуществляют их корреляция и суммирование.

Указанные выше технические результаты достигаются также тем, что формируют дополнительный поток лазерного излучения от второй пары диодных источников лазерного излучения с длинами волн от 520нм до 528нм и от 532нм до 540нм соответственно, каждый источник второй пары обеспечивают средством преобразования лазерного излучения в электрические сигналы, упомянутыми потоками облучают ткани участка тела человека, преобразуют отраженное от тканей излучение в электрические сигналы, несущие информацию о параметрах работы сердца, и на их основе определяют биопотенциалы сердца..

Указанные выше технические результаты достигаются также тем, что электронное устройство содержит средства обработки электрических сигналов, несущих информацию о параметрах работы сердца, для осуществления способа определения параметров работы сердца в соответствии с настоящим изобретением.

Указанные выше технические результаты достигаются также тем, что электронное устройство выполнено в виде интегральной микросхемы.

Указанные выше технические результаты достигаются также тем, что упомянутые средства обработки выполнены в виде программного обеспечения.

Отличительной особенностью настоящего изобретения является наличие, по крайней мере, двух источников лазерного излучения с различной длиной волны, при этом каждый источник снабжен своим собственным средством регистрации отраженного излучения.

Краткий перечень фигур чертежей

На Фиг.1 показан общий внешний вид устройства.

На Фиг.2 и 3 показана структура устройства при различном количестве излучателей.

На Фиг.4 показана схема взаимодействия излучателя и регистратора отраженного сигнала.

На Фиг.5 показана связь отраженных испульсов с элементами кардиограммы.

Осуществление изобретения

Заболевания сердца в последние десятилетия вышли на первый план причин смертности и инвалидности. В связи с этим задача разработки новых методов диагностики и мониторинга сердечной деятельности становится все более актуальной. Информация о параметрах сердечной деятельности является основой для оценки состояния как отдельных органов, так и целых систем жизнедеятельности человека: нервной системы, адаптивных возможностей, систем регуляции и пр. Существуют многочисленные диагностические методики психофизиологического состояния, основанные на анализе вариабельности сердечного ритма. В то же время любая методика, построенная на анализе сердечного ритма, нуждается в эффективных средствах получения точной первичной измерительной информации о параметрах сердечной деятельности.

Одним из наиболее распространенных способов получения первичной измерительной информации является электрокардиограмма (ЭКГ). Как известно, электрокардиограмма (ЭКГ) - периодически повторяющаяся кривая биопотенциалов сердца, отражающая протекание процесса возбуждения сердца, возникшего в синусном (синусно-предсердный) узле и распространяющегося по всему сердцу, регистрируемая с помощью электрокардиографа. Отдельные ее элементы - зубцы, сегменты и интервалы - имеют специальные наименования:

- зубцы Р, Q, R, S, Т

- интервалы PQ, QRS, QT, RR; 

- сегменты PQ, ST, TP.

Они характеризуют возникновение и распространение возбуждения по предсердиям (Р), межжелудочковой перегородке (Q), постепенное возбуждение желудочков (R), максимальное возбуждения желудочков (S), реполяризацию желудочков (S) сердца. Зубец P отражает процесс деполяризации обоих предсердий, комплекс QRS - деполяризацию обоих желудочков, а его длительность - суммарную продолжительность этого процесса. Сегмент ST и зубец Г соответствуют фазе реполяризации желудочков. Продолжительность интервала PQ определяется временем, за которое возбуждение проходит предсердия. Продолжительность интервала QR-ST- длительность «электрической систолы» сердца; она может не соответствовать длительности механической систолы.

ЭКГ получают с помощью электрокардиографа - аппарата, предназначенного для отображения работы отделов сердца, путем регистрации кривой. Он позволяет оперативно снимать ЭКГ: регистрирует и измеряет разности потенциалов сердца с поверхности тела человека, при помощи наложения электродов. Может работать как в ручном, так и в автоматическом режиме. Как правило, функционал аппарата зависит от области применения, однако абсолютно все устройства должны отвечать требованию высокого качества регистрируемой электрокардиограммы. Качественную ЭКГ в любых условиях позволяют получить специальные фильтры.

Широкое распространение в медицине электрокардиограф получил благодаря своему относительно простому устройству и несложным методам работы. Он безопасен и не создает дискомфорта для больного. 

Однако существующие технологии получения ЭКГ с помощью электрокардиографа мало пригодны для систем длительного мониторинга и наблюдения за состоянием пациента при сохранении обычного режима жизнедеятельности (подвижности, мобильности и пр.). Оборудование для ЭКГ энергозатратно, массивно и сложно обеспечить его надежную фиксацию на теле пациента в условиях сохранения обычной активности. Задачей настоящего изобретения является создание надежного и эффективного средства для измерения и мониторинга всех параметров, необходимых для полноценного анализа сердечной деятельности (интенсивность зубцов P, Q, R, S, T). Полученная с помощью данного изобретения информация позволяет автоматизировать расчет и анализ комплекса QRS, частоты сердечных сокращения, интервалов Q-T, T-P, S-T и пр.

Изобретение основано на том, что способность красных кровяных телец отражать когерентное излучение зависит от ряда факторов и прежде всего от длины волны излучения и фазы работы сердца. Интенсивность отраженных волн пропорциональная количеству красных кровяных телец, попавших в зону облучения лазерным диодом. Таким образом, в каждый момент времени существует корреляционная связь между значением биопотенциала сердца и интенсивностью волны, отраженной от тела пациента и обусловленной его состоянием.

В соответствии с изобретением, для определения параметров работы сердца формируют поток лазерного излучения, который включает излучение, по крайней мере, от двух источников 4 и 5 с различной длиной волны. Каждый упомянутый источник 4 или 5 обеспечивают средством 6 и 7 преобразования лазерного излучения в электрические сигналы. Упомянутым потоком облучают ткани 21 участка тела человека, преобразуют отраженное от тканей излучение в электрические сигналы, несущие информацию о параметрах работы сердца, и на их основе определяют биопотенциалы сердца (как показано на Фиг.4).

Способ осуществляется с помощью устройства, показанного на Фиг.1-3.

Как показано на Фиг.1 устройство для измерения параметров работы сердца содержит корпус 1, например, снабженный для удобства средством 2 крепления на теле пациента. Устройство может быть снабжено дисплеем 12 для отображения информации о параметрах работы сердца, а также и другой информации, например, времени, даты, температуры тела, величины кровяного давления и др.

Наиболее целесообразно устанавливать устройство на запястье пациента в зоне максимального проявления пульса. Однако настоящий способ позволяет проводить измерения в любом месте на теле пациента, в частности, в области плеч, груди, на нижних конечностях. Средство 2 крепления может быть выполнено, например, в виде ремешка, как показано на Фиг.1. В этом случае устройство устанавливается на запястье пациента в виде браслета.

Внутри корпуса 1 установлен источник 3 питания, по крайней мере, два источника лазерного излучения 4 и 5. Как показано на Фиг.2 каждый источник лазерного излучения снабжен средством преобразования лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца пациента (позиции 6 и 7).

В корпусе 1 установлены также блок 8 памяти для записи информации о работе сердца и блок 9 передачи информации о параметрах работы сердца во внешние системы обработки и хранения информации, например в облачное хранилище.

Предпочтительно устройство может содержать пару диодных источников 4 и 5 лазерного излучения с длинами волн от 540нм до 550нм и от 560нм до 570нм.

Молекулярные соединения компонентов крови (например, гидроксильных групп в составе гемоглобина и пр.) обладают различными значениями собственных частот и различной способностью отражать оптическое излучение. Кроме этого, компоненты крови и элементы тканей в теле человека могут занимать различное пространственное положение в разлные моменты времени. Основа изобретения заключается в одновременном облучении тканей тела пациента когерентным излучением с двумя различными значениями длины волны. В этом случае, излучение с одной длиной волны получит максимальный отклик (в виде отраженной волны) от одной части молекулярных соединений и элементов тканей, а излучение с друой длиной волны обеспечит максимальный отклик от другой части молекулярных соединений и элементов. Сложив полученные значения отраженных сигналов, можно получить наиболее точное соответствие с фактическим значением биопотенциала сердца в каждый момент времени.

Устройство дополнительно может содержать вторую пару диодных источников 10 и 11 (Фиг.3) лазерного излучения с длинами волн от 520нм до 528нм и от 532нм до 540нм. Соответственно, каждый дополнительный источник 10 и 11 лазерного излучения снабжен собственным средством преобразования лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца пациента (позиции 18 и 19).

Дополнительная пара излучателей увеличивает точность измерения отраженного сигнала за счет еще большего охвата отклика молекулярных соединений, увеличения динамического диапазона и увеличение ширины спектрального анализа.

Целесообразно, чтобы один источник лазерного излучения в паре обеспечивал продольную поляризацию, а второй – поперечную. Это объясняется тем, что красные кровяные тельца в теле имеют различное расположение в пространстве. Наибольшая точность метода достигается в том случае, когда поляризация излучения совпадает с длиной кровяных телец. Это позволяет исключить влияние внешней засветки и получить, после математической обработки, более качественный общих сигнал путем сложения двух независимых кривых интенсивности отраженного сигнала, полученного от телец, имеющих различную пространственную ориентацию.

Блок 9 передачи информации о параметрах работы сердца выполнен в виде модуля беспроводной персональной сети (WPAN), например, стандарта Bluetooth. В качестве блока 9 может использоваться модуль беспроводной локальной сети (например Wi-Fi).

Метод, используемый в настоящем изобретении, позволяет получить с необходимой точностью информацию при постоянном излучении источников 4, 5 и 10, 11. Однако, при постоянном режиме быстро расходуется заряд источника питания при том, что для последующей цифровизации полученный отраженный сигнал необходимо дискретизироовать, квантовать и пр. В случае использования постоянного режима работы излучателей, устройство может быть снабжено аналого-цифровым преобразователем (например, обладающим разрядностью 24 бит и рабочим диапазоном от 1В до 3В). Это позволит преобразовывать измерительную информацию в цифровую форму и обрабатывать ее с помощью процессора 17.

Наиболее целесообразно сразу обеспечить импульсный режим работы излучателей и преобразователей 6, 7. С этой целью устройство предпочтительно содержит блок 13 генерации импульсов, обеспечивающий импульсное лазерное излучение с максимальной частотой F до 300 импульсов в секунду. Импульсный режим увеличивает срок работы прибора за счет уменьшенного энергопотребления, обеспечивает фильтрацию теневого измерения, сокращает время воздействия на ткани тела пациента.

Блок 13 генерации импульсов может быть выполнен адаптивным с возможностью изменения частоты импульсов от 30 до 300 импульсов в секунду с длительностью b от 1мкс до 33мс (Фиг.5). Это улучшает точность выставления экспозиции и своевременную реакцию прибора на отклонения от нормы.

Блок 8 памяти снабжен средством сжатия измерительной информации. Для этого можно использовать фильтр Вейвлет Хаа́ра и алгоритм Хаффмана кодирования, который позволит при малом энергопотреблении записывать большие данных для обработки на удаленных серверах.

Устройство дополнительно может быть снабжено средством 14 измерения кровяного давления и средством 16 измерения температуры пациента. В качестве средства 14 целесообразно использовать пьезоэлектрические генераторы малой мощности, которые в результате колебаний от соприкосновения, вырабатывают регистрирующее напряжение от пульсовой волны, вторичным является так же регистрация пульсовой волны.

Средство преобразования лазерного излучения в электрический сигнал целесообразно выполнить в виде ПЗС элемента с оптическим фильтром с рабочим диапазоном частот от 515нм до 570нм. Тем самым убираются ненужные частоты, которые могу возникнуть в результате неправильного прилегания устройства или засветки. Это обеспечит, в свою очередь, более стабильный отклик системы в независимости от внешних помех и теневого тока.

Устройство может содержать средства 15 трехкаскадного усиления сигнала с фильтрами нижних, высоких и нижних частот, соединенных в прямой последовательности. Оптимальный коэффициент усиления сигнала составляет от 10дБм до 18дБм.

Очевидно, что основу устройства составляют электронные компоненты, содержащие средства обработки электрических сигналов, несущих информацию о параметрах работы сердца. Именно электронная составляющая обеспечивает осуществление способа в соответствии с изобретением.

Электронное устройство может быть выполнено в виде интегральной микросхемы (hardware), в виде программного обеспечения (software) или комбинированного программно-аппаратного решения (firmware).

Электронное устройство для осуществления способа может встраиваться в любые известные медицинские средства (например, системы для физиотерапии), расширяя тем самым их функционал.

Способ осуществляется следующим образом:

Как показано на Фиг.5, блок 13 генерации импульсов формирует прямоугольные импульсы заданной длительностью b от 1мксек до 1мсек с частотой F до 300 Гц и мощностью до 20мВт и направляет их на источники лазерного излучения 4 и 5. Текущее значение частоты и длительности импульсов может выбираться исходя из состояния пациента. Например, в ночное время, когда физическая активность отсутствует в целях сбережения энергии частота и длительность импульсов могут быть минимальными. В периоды высокой физической активности или когда кардиоинформация нужна с особо высокой точностью (например, при прединфарктных состояниях) частота увеличивается. Таким образом реализуется адаптивный механизм выбора параметров излучения в зависимости от условий, в которых находится пациент, и от состояния его здоровья. Возможность регулирования параметров излучения позволяет подобрать оптимальный режим работы устройства для людей с различными заболеваниями.

Лазерный луч падает на ткани 21 тела пациента и, отразившись от них (в том числе от красных кровяных телец) 20, луч улавливается средствами (позиция 6) преобразования лазерного излучения (фотоприемником) в электрический сигнал, как показано на Фиг.4. Таким образом осуществляется регистрация отраженного излучения, несущего информацию о параметрах работы сердца.

От фотоприемника сигнал усиливается на трехкаскадном усилителе с осуществлением последующей фильтрации сигнала.

При постоянном режиме работы излучателей устройство снабжено процессором 17 и сигнал предварительно поступает на аналого-цифровой преобразователь и далее оцифрованный сигнал поступает в процессорный блок.

Для получения коэффициентов поглощения и выделения более точного времени поступления отраженного сигнала обеспечивается восстановление прямоугольной формы сигнала.

При использовании адаптивных алгоритмов, частота и длительность последующего измерительного импульса может определяться на основе различных интегральных параметров, например в зависимости от интенсивности предыдущего зарегистрированного импульса. Это позволяет, например увеличить частоту и мощность импульсов в моменты нестабильной работы сердца для получения более точной биоинформации.

Сигнал анализируется, сжимается и отправляется в блок памяти 6 и через блок 7 на смартфон пользователя и далее на сервер хранения и обработки информации.

Расчет собственно кардиограммы может производиться путем разложения полученной последовательности интенсивности отраженного сигнала в ряд Фурье с фильтрацией низких частот с последующим обратным преобразованием для восстановления искомого значения.

Как показано на Фиг.5, отраженные импульсы несут информацию о значениях биопотенциала сердца. Регистрация и обработка отраженных импульсов позволяет с высокой точностью определить все параметры, присущие ЭКГ и передать эти данные для хранения, обработки и анализа в любые компьютеризированные системы, как в пределах одного лечебного учреждения, так и между различными учреждениями, объединенных общей сетью или имеющих доступ к хранилищу данных о пациенте.

1. Способ определения параметров работы сердца, состоящий в том, что

- формируют поток лазерного излучения, который включает излучение от первой пары источников с различной длиной волны, каждый упомянутый источник обеспечивают средством преобразования отраженного от тела человека лазерного излучения в электрические сигналы, упомянутые источники лазерного излучения выполняют диодными, одним их них обеспечивают длину волны от 540 нм до 550 нм, а вторым - от 560 нм до 570 нм, при этом одним из упомянутых источников обеспечивают продольную поляризацию, а вторым - поперечную,

- формируют дополнительный поток лазерного излучения от второй пары диодных источников лазерного излучения с длинами волн от 520 нм до 528 нм и от 532 нм до 540 нм соответственно, каждый источник второй пары обеспечивают средством преобразования лазерного излучения в электрические сигналы, при этом одним из упомянутых источников второй пары обеспечивают продольную поляризацию, а вторым - поперечную,

- упомянутыми потоками облучают ткани участка тела человека, преобразуют отраженное от тканей излучение в электрические сигналы, несущие информацию о параметрах работы сердца, и на их основе определяют биопотенциалы сердца.

2. Способ по п. 1, отличающийся тем, что полученные электрические сигналы, несущие информацию о параметрах работы сердца, направляют в удаленный сервер, в котором осуществляют их корреляция и суммирование.

3. Носимое электронное устройство для определения параметров работы сердца, содержащее средства обработки электрических сигналов, несущих информацию о параметрах работы сердца, для осуществления способа по п. 1.

4. Электронное устройство по п. 3, отличающееся тем, что выполнено в виде интегральной микросхемы.



 

Похожие патенты:
Изобретение относится к области медицины, а именно кардиологии и неврологии. У пациентов с инфарктом миокарда выявляют прогностические критерии, а именно: тип поражения митрального клапана, форма фибрилляции предсердий, наличие других аритмий, наличие нарушений синоатриальной и атриовентрикулярной проводимости, сердечной недостаточности по классификации Нью-Йоркской ассоциации сердца, наличие инсульта в анамнезе, тип инсульта в анамнезе, длительность гипертонии, максимальное диастолическое артериальное давление, тип поражения аортального клапана и вычисляют прогностический коэффициент (Z) по оригинальной формуле.

Изобретение относится к области медицины, а именно к хирургии, и может быть использовано для диагностики стабильности фиксации и диастаза грудины после срединной стернотомии. У больных перед операцией срединной стернотомии в момент максимального выдоха измеряют угол в области яремной вырезки, затем измеряют угол в области мечевидного отростка.

Изобретение относится к мобильным носимым устройствам геопозиционирования, использующим для вычисления координат и передачи данных технологию LoRaWAN. Технический результат заключается в обеспечении определения координат местонахождения пользователя в условиях плотной городской застройки и в зданиях.

Изобретение относится к области медицины, а именно к кардиологии, и касается способа скрининговой диагностики коронарного атеросклероза с помощью неинвазивного биомаркера-КА. Сущность способа: биомаркер-КА в группе риска развития ишемической болезни сердца рассчитывают по следующим показателям: пол, толщина комплекса интима-медиа (ТКИМ), индекс жесткости β, сердечно-лодыжечный сосудистый индекс L-/CAVI1, общий холестерин (ОХС), триглицериды (ТГ), липопротеиды низкой плотности (ЛНП), значения которых используют путем шкалирования.
Изобретение относится к области медицины, в частности к лабораторной диагностике, и может быть использовано при обследовании пациентов для диагностики начальной стадии острого почечного повреждения (ОПП) в послеоперационном периоде. Способ диагностики острого почечного повреждения после радикальной цистэктомии включает определение концентрации липокалина-2 (uNGAL) и интерлейкина-18 (uIL-18) в моче.

Изобретение относится к клинической медицине, а именно - к стоматологии и клинической лабораторной диагностике. Способ прогнозирования риска прогрессирования кариеса включает исследование нестимулированной ротовой жидкости.

Изобретение относится к медицине и касается способа прогнозирования неразвивающейся беременности, ассоциированной с хромосомными аномалиями эмбриона, заключающегося в том, что определяют анамнестические данные женщины и мужчины, планирующих деторождение: возраст пациентки и ее партнера, наличие у пациентки хронических заболеваний мочеполовой системы, злоупотребление алкоголем партнером, осуществляют анализ полиморфизма MTHFR С677Т у женщины и параметров спермограммы у мужчины, после чего вычисляют прогностический индекс Y; и при Y>0 прогнозируют высокий риск неразвивающейся беременности, ассоциированной с ХА у эмбриона, а при Y<0 - низкий риск неразвивающейся беременности, связанной с геномными мутациями у эмбриона.

Изобретение относится к медицине и касается способа прогнозирования развития избыточного рубцеобразования у больных после проктологической операции, включающего проведение иммуноферментного анализа периферической крови и определение в сыворотке периферической крови больных уровней C-реактивного белка, гаптоглобина и альбумина, где проведение иммуноферментного анализа периферической крови, включающего определение в сыворотке уровней C-реактивного белка, гаптоглобина и альбумина, проводят до и после хирургической операции на 5-й и 11-й день, при этом при повышении к 5 суткам послеоперационного периода концентрации C-реактивного белка от 85,0 до 241,33 г/л, гаптоглобина от 1,14 до 1,83 г/л и снижении уровня альбумина сыворотки крови от 42,28 до 31,05 г/л, а к 11 дню при увеличении в сравнении с дооперационными показателями соответственно: C-реактивного белка до 150%, гаптоглобина до 140%, а концентрации альбумина сыворотки крови без тенденции к восстановлению прогнозируют избыточное рубцеобразование.

Изобретение относится к медицине и может быть использовано для диагностики патологических состояний человека. Проводят сбор анамнеза у пациента путем интерактивного опроса, клинико-лабораторные и инструментальные исследования.

Изобретение относится к области биотехнологии. Предложен метод иммуноферментного определения уровня антигенраспознающих рецепторов В-лимфоцитов, представленных мембранными, специфическими к RBD Protein SARS-CoV-2, IgG антителами.

Группа изобретений относится к медицине, а именно к компьютеризированным способам неинвазивного выявления нарушения углеводного обмена (НУО) по вариабельности сердечного ритма (ВСР) пациента, носимым автономным устройствам для их осуществления, а также к способу скрининга населения для выявления лиц с признаками НУО по ВСР.
Наверх