Устройство для испытания манжетного уплотнения

Использование: в технике измерений, для контроля рабочих характеристик эластомерных уплотнений, например манжетных. Сущность: устройство для испытания манжетного уплотнения, установленного в заполненной электропроводящей жидкостью полости корпуса, снабженное выходящими на поверхность контакта манжеты с полым валом зондирующими электродами, соединенными с источником питания и ограничительными резисторами, в котором для одновременного измерения величины продольного смещения зоны контакта по валу и ширины этого контакта в зависимости от угла поворота вала относительно манжеты, зондирующие электроды расположены в теле вала, уложены последовательно в ряд и выведены на поверхность вала по линии, примерно параллельной его оси, при этом зондирующие электроды соединены с источником питания и ограничительными резисторами, дополнительно содержит второе вспомогательное манжетное уплотнение, а зондирующие электроды подключены к входам электронных усилителей, выходы которых подключены к укрепленному в торце полого вала светодиодному табло для передачи светового потока в приемный блок, при этом управление электроприводом осуществляется от электронно-вычислительной машины с помощью цифро-аналогового преобразователя и усилителя мощности. Технический результат заключается в повышении точности измерения за счет устранения помех в цепях передачи измерительной информации, что позволяет измерять мгновенное значение ширины контакта манжетного уплотнения с валом, а также смещения контакта манжетного уплотнения вдоль вала одновременно и локально в нескольких точках по окружности вала, формировать графики зависимостей во времени ширины контакта и смещения манжетного уплотнения в заданных точках контакта с валом. 4 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для контроля рабочих характеристик эластомерных уплотнений, например манжетных, широко применяемых в различных отраслях техники (машиностроении, автомобиле- и тракторостроении, авиации и т.д.).

Известно устройство для измерения ширины контакта манжетного уплотнения с валом (SU №504072 А1, G01B 7/02, от 25.02.1976), которое состоит из имитатора вала, выполненного из непроводящего электрический ток материала, проводника электрического тока, укрепленного на цилиндрической части имитатора вала, двух электродов, электролитической ванны и омметра. Проводник выполнен в виде проволочной спирали, навитой с постоянным шагом на имитатор вала, и заглублен на половину диаметра проволоки, выступающая часть которой удалена заподлицо с поверхностью имитатора вала. Манжетное уплотнение разделяет электролитическую ванну на два самостоятельных объема, а в месте его контакта с имитатором вала изолирует часть проволоки от прямого контакта с жидким проводником. О ширине контакта манжетного уплотнения с валом судят по показаниях омметра, пропорциональным длине проволоки, закрываемой уплотнением.

Наиболее близким по технической сущности к предложенному устройству является устройство для испытания манжетного уплотнения (SU №702204 А1, F16J 15/32, от 05.12.1979), которое представляет собой корпус, заполненный электропроводящей жидкостью. В корпусе размещаются исследуемое и вспомогательное манжетное уплотнение, а также полый вал. В теле вала, уложены последовательно в ряд зондирующие электроды, которые своими торцами выведены на поверхность вала по линии, параллельной его образующей. Внутри полого вала размещается источник питания и измерительное устройство. Исследуемое манжетное уплотнение изолирует часть торцов зондирующих электродов от электропроводящей жидкости. По количеству зондирующих электродов, контактирующих с электропроводящей жидкостью, определяют ширину контакта манжетного уплотнения с валом.

Недостатками описанных устройств являются:

- недостаточная точность, обусловленная аналоговой обработкой измерительной информации, получаемой в дискретной форме;

- наличие помех, обусловленных щеточными контактами в цепях передачи измерительной информации,

- невозможность измерять мгновенное значение ширины контакта манжетного уплотнения с валом одновременно и локально в нескольких точках по окружности вала,

- невозможность автоматически формировать графики зависимостей ширины или смещения контакта манжетного уплотнения вдоль вала одновременно в различных точках этого контакта от времени или частоты вращения вала.

Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения ширины контакта манжетного уплотнения с валом, устранение помех в цепях передачи измерительной информации, наличие возможности измерять мгновенное значение ширины контакта манжетного уплотнения с валом, а также смещения зоны контакта вдоль оси вала, одновременно и локально в нескольких точках по окружности вала и автоматически формировать графики зависимостей ширины или смещения контакта манжетного уплотнения с валом одновременно в различных точках этого контакта от времени или частоты вращения вала.

Сущность изобретения достигается тем, что устройство для испытания манжетного уплотнения, установленного в заполненной электропроводящей жидкостью полости корпуса, снабженное выходящими на поверхность контакта манжеты с полым валом зондирующими электродами, соединенными с источником питания и ограничительными резисторами, в котором для одновременного измерения величины продольного смещения зоны контакта по валу и ширины этого контакта в зависимости от угла поворота вала относительно манжеты, зондирующие электроды расположены в теле вала, уложены последовательно в ряд и выведены на поверхность вала по линии примерно параллельной его оси, при этом зондирующие электроды соединены с источником питания и ограничительными резисторами, дополнительно содержит второе вспомогательное манжетное уплотнение, а зондирующие электроды подключены к входам электронных усилителей, выходы которых подключены к укрепленному в торце полого вала светодиодному табло для передачи светового потока в приемный блок, при этом управление электроприводом осуществляется от электронно-вычислительной машины с помощью цифроаналогового преобразователя и усилителя мощности.

Сущность изобретения поясняется чертежами.

На фиг.1 представлена структурная схема устройства; на фиг.2 показана конструкция измерительного блока устройства, на фиг. 3 показано светодиодное индикаторное табло для двух групп светодиодов, на фиг. 4 показано светодиодное индикаторное табло для четырех групп светодиодов.

Структурная схема устройства содержит: 1 - электропривод, 2 - измерительный блок, 3 - светодиодное индикаторное табло, 4 - объектив, 5 - матрица из приборов с зарядовой связью (ПЗС - матрица), 6 - аналого-цифровой преобразователь (АЦП), 7 - схема управления, 8 - усилитель мощности (УМ), 9 - цифроаналоговый преобразователь (ЦАП), 10 -электронно-вычислительная машина (ЭВМ), 11 - регулируемый электропривод, 12- приемный блок.

На фиг. 2 показаны следующие узлы и детали измерительного блока устройства: 13, 16 - ограничительные резисторы для ограничения тока через зондирующие электроды 29, 38; 14 - муфта для связи с электродвигателем 1; 15 - блок питания для питания электронной схемы; 17 - полый вал для контакта с исследуемым манжетным уплотнением 24 и вспомогательными манжетными уплотнениями 21, 27; 18 - подшипник скольжения для фиксации полого вала 17 в корпусе 19; 19 - корпус для размещения в нем узлов и деталей измерительного блока; 20, 22, 25, 28 - установочные кольца для фиксации исследуемого манжетного уплотнения 24 и вспомогательных манжетных уплотнений 21, 27 в корпусе 19; 21, 27 - вспомогательные манжетные уплотнения для создания полостей под электропроводящую жидкость, 23, 26 - заливочные отверстия для заливки электропроводящей жидкости, 24 - исследуемое манжетное уплотнение, 29, 38 - зондирующие электроды; 30 - крышка корпуса; 31 - подшипник скольжения для фиксации полого вала 17 в крышке корпуса 30; 32, 33 - блоки электронных усилителей для усиления сигналов с зондирующих электродов 29, 38; 35 - маркерный светодиод для фиксации центра табло 37; 34, 36 - информационные светодиоды для передачи измерительной информации в приемный блок 12; 37 - информационное табло для размещения информационных светодиодов; Между вспомогательными манжетными уплотнениями 21, 27 и исследуемым уплотнением 24 залита электропроводящая жидкость.

При работе устройства сигнал с каждого зондирующего электрода проходит 4 стадии:

- преобразование электрического сигнала в оптический,

- передача оптического сигнала с вращающего вала в приемный блок,

- преобразование оптического сигнала в электрический сигнал,

- формирования измерительной информации.

Стадия преобразования электрического сигнала в оптический реализуется тем, что каждый зондирующий электрод подключен ко входу соответствующего электронного усилителя, а нагрузкой усилителя служит светодиод, размещенный на световом табло, прикрепленное к торцу вала.

Стадия передачи оптического сигнала с вращающего вала в приемный блок осуществляется путем передачи оптического сигнала от светодиодов, размещенных на световом табло, через объектив на ПЗС-матрицу.

Стадия преобразования оптического сигнала в электрический сигнал выполняется путем управления работой ПЗС-матрицы от ЭВМ через схему управления с дальнейшей передачей электрических сигналов от ПЗС-матрицы в АЦП, а затем в ЭВМ на обработку.

Стадия формирования измерительной информации осуществляется путем формирования базы данных измерительной информации в памяти ЭВМ с последующей обработкой этих данных по заданной программе в зависимости от целей исследования или контроля. Вывод измерительной информации производится на принтер или дисплей.

Работа устройства для испытания манжетных уплотнений состоит в следующем. Регулируемый электропривод 11 передает вращающий момент в измерительный блок 2, где находятся исследуемое манжетное уплотнение, полый вал и электронная схема измерения мгновенного значения ширины и смещения контакта манжетного уплотнения одновременно и локально в нескольких точках по окружности вала. Схема, размещенная внутри полого вала, служит также для преобразования мгновенного значения ширины и смещения контакта манжетного уплотнения с валом в дискретный сигнал. Этот сигнал поступает в светодиодное индикаторное табло 3, прикрепленное к торцу полого вала. Оптический сигнал от светодиодов этого табло поступает через объектив 4 в ПЗС-матрицу 5, которая управляется схемой управления 7 с помощью ЭВМ 10. В ПЗС-матрице 5 происходит преобразование оптического сигнала в электрический сигнал, который поступает через АЦП 6 в ЭВМ 10 для обработки и выработки выходного сигнала в зависимости от целей и программы исследования манжетного уплотнения.

Основными функциональными элементами устройства являются: регулируемый электропривод 11, измерительный блок, светодиодное индикаторное табло, приемный блок, электронно-вычислительная машина.

Регулируемый электропривод 11 состоит из приводного электродвигателя постоянного тока 1 и схемы управления. В состав схемы управления приводного электродвигателя 1 входят усилитель мощности 8, который питает цепь якоря двигателя 1, а также цифроаналоговый преобразователь 9, преобразующий цифровой код, поступающий от ЭВМ 10 в аналоговый сигнал, необходимый для управления приводным электродвигателем 1. Благодаря применению в приводном электродвигателе 1 независимого возбуждения имеется возможность регулировать в широких пределах частоту вращения вала двигателя. Частота вращения приводного электродвигателя определяется целями исследования манжетного уплотнения. Программа исследования записывается в память ЭВМ 10.

Особенности конструкции измерительного блока состоят в следующем.

Полый вал 17 имеет от одного до нескольких продольных пазов, в каждом из которых уложен один ряд изолированных между собой зондируюших электродов 29, 38. Торцовые части зондируюших электродов срезаны заподлицо с наружной поверхностью полого вала и контактируют с исследуемым манжетным уплотнением 24 и жидким проводником. Количество пазов в полом валу определяется программой исследования манжетного уплотнения. Внутри полого вала 17 размещены блоки электронных усилителей 32, 33 и блок питания 15. Количество блоков электронных усилителей равно количеству пазов в полом валу. Зондируюшие проводники подключены ко входам блоков электронных усилителей, поэтому количество усилителей в блоке равно количеству зондируюших проводников в одном ряду. К торцу полого вала прикреплено светодиодное индикаторное табло 37. Светодиоды 34,36 соединены с выходами блоков электронных усилителей 32, 33.

Работа измерительного блока состоит в следующем. На зондирующие электроды 29, 38 через ограничительные резисторы 16, 13 подается напряжение смещения, равное логической единице относительно корпуса устройства 19 и полого вала 17. В зависимости от зоны контакта исследуемого манжетного уплотнения с полым валом торцы зондирующих электродов контактируют либо с материалом манжетного уплотнения, либо с проводящей жидкостью. Если торец зондирующего электрода контактирует с проводящей жидкостью, то напряжение становится равным уровню логического нуля, так как напряжение смещения через проводящую жидкость замыкается на корпус и полый вал. Напряжения с одной группы зондирующих электродов поступает на входы соответствующего блока электронных усилителей и после усиления по мощности подается на светодиоды, расположенные в светодиодном индикаторном табло 37. На светодиодном индикаторном табло 37 светятся только те светодиоды, которые через электронные усилители соединены с зондирующими электродами, находящимися в зоне контакта исследуемого манжетного уплотнения с валом и поэтому не контактируют с электропроводящей жидкостью. По количеству светящихся светодиодов в одной группе можно определить мгновенное значение ширины контакта исследуемого манжетного уплотнения 24 с соответствующим пазом полого вала 17.

Светодиодное индикаторное табло может иметь различное исполнение.

На Фиг. 3 показан вариант исполнения светодиодного индикаторного табло для двух групп светодиодов. На Фиг. 4 показан вариант исполнения светодиодного индикаторного табло для четырех групп светодиодов. Для обозначения оси вала в центре табло установлен маркерный светодиод 35. Остальные светодиоды имеют информационную функцию. Количество групп светодиодов равно количеству пазов в полом валу. Количество светодиодов в группе равно количеству зондируюших проводников в соответствующем пазу полого вала 17.

Приемный блок 12 служит для преобразования оптического сигнала в электрический с последующей селекцией и дискредитации этого сигнала и дальнейшей передачей его в ЭВМ 10. В состав приемного блока входят: объектив 4, ПЗС-матрица 5, АЦП 6 и схема управления 7. Управление приемным блоком осуществляется от ЭВМ 10.

Электронно-вычислительная машина 10 работает по заданной программе и выполняет следующие функции: прием и обработка информации, получаемой от ПЗС - матрицы 5, управление разверткой ПЗС - матрицы 5, управление частотой вращения регулируемого электропривода 11, вывод измеренных данных.

Подготовка устройства к работе заключается в следующем. В корпус устройства 19 помещают полый вал 17, а также установочные кольца 20, 22, 25, 28, вспомогательные манжетные уплотнения 21, 27 и исследуемое уплотнение 24. В полости между исследуемым уплотнением 24 и вспомогательными уплотнениями 21, 27 заливают электропроводящую жидкость. Сборка всего устройства производится таким образом, что середина ширины зоны контакта исследуемого манжетного уплотнения с полым валом 17 располагается на середине ряда зондирующих электродов.

Таким образом, рассмотренное устройство, в отличие от известных, позволяет повысить точность измерения за счет устранения помех в цепях передачи измерительной информации и позволяет измерять мгновенное значение ширины контакта манжетного уплотнения с валом, а также смещения контакта манжетного уплотнения вдоль вала одновременно и локально в нескольких точках по окружности вала, формировать графики зависимостей во времени ширины контакта и смещения манжетного уплотнения в заданных точках контакта с валом.

Устройство для испытания манжетного уплотнения, установленного в заполненной электропроводящей жидкостью полости корпуса, снабженное выходящими на поверхность контакта манжеты с полым валом зондирующими электродами, соединенными с источником питания и ограничительными резисторами, в котором для одновременного измерения величины продольного смещения зоны контакта по валу и ширины этого контакта в зависимости от угла поворота вала относительно манжеты, зондирующие электроды расположены в теле вала, уложены последовательно в ряд и выведены на поверхность вала по линии, примерно параллельной его оси, при этом зондирующие электроды соединены с источником питания и ограничительными резисторами, отличающееся тем, что дополнительно содержит второе вспомогательное манжетное уплотнение, а зондирующие электроды подключены к входам электронных усилителей, выходы которых подключены к укрепленному в торце полого вала светодиодному табло для передачи светового потока в приемный блок, при этом управление электроприводом осуществляется от электронно-вычислительной машины с помощью цифроаналогового преобразователя и усилителя мощности.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для контроля рабочих характеристик эластомерных уплотнений, например манжетных, широко применяемых в различных отраслях техники (машиностроении, автомобиле- и тракторостроении, авиации и т.д.). Сущность изобретения заключается в том, что способ испытания манжетных уплотнений включает получение токовых сигналов, пропорциональных величинам продольного смещения зоны контакта по валу и ширине этого контакта с помощью зондирующих электродов, установленных в пазу полого вала и контактирующих с рабочей поверхностью манжетного уплотнения, а сигналы, поступающие с электродов, усиливаются в усилителях и далее преобразуются в оптические сигналы, которые с вращающегося вала поступают в приемный блок, где приборами с зарядовой связью преобразуются в электрические аналоговые сигналы и после оцифровки в аналого-цифровом преобразователе анализируются с помощью электронно-вычислительной машины для получения результатов измерений.

Изобретение относится к сельскохозяйственному машиностроению, в частности к оборудованию для круглогодичных ускоренных испытаний рабочих органов сельскохозяйственных машин в лабораторных условиях. Способ испытания рабочих органов (РО) почвообрабатывающих машин, преимущественно вычесывающего органа, заключается в том, что c помощью электромеханического привода осуществляют вращение рабочего органа (6).

Изобретение относиться к области технической диагностики и может быть использовано для диагностики технического состояния подшипниковых узлов качения и скольжения в составе многоканальных стационарных систем. Приемо-преобразовательный модуль содержит корпус, внутри которого расположены преобразователь акустико-эмиссионных сигналов (ПАЭС), блок преобразования аналоговых сигналов в цифровые (БПАСЦ), блок питания (БП), а также блок управления и обработки информации (БУОИ), соединенный с интерфейсным блоком USB (USB) и/или с модулем беспроводной связи (МБС).

Изобретение относится к области промышленной аэротермодинамики и может быть использовано для исследований аэротермомеханической стойкости материалов и элементов конструкций авиационной и ракетной техники на воздействие высокоэнтальпийных скоростных газовых потоков. Установка содержит как минимум одну камеру сгорания с аэродинамическим соплом, снабженную системой зажигания, систему подачи топлива, подключенную к первому вводу камеры сгорания и включающую, источник топлива, топливную магистраль, первый управляемый клапан, регулятор расхода топлива, первое расходомерное устройство, снабженное соплом, систему подачи кислорода, подключенную к второму вводу камеры сгорания и включающую источник кислорода, кислородную магистраль, регулятор расхода кислорода, второй управляемый клапан, второе расходомерное устройство, снабженное соплом, систему подачи нейтрального газа, включающую магистраль нейтрального газа, источник нейтрального газа, выход которого подключен к входу регулятора давления нейтрального газа, выход которого соединен с параллельно установленными третьим и четвертым управляемыми клапанами, датчики давления, входы первых из которых подключены к полостям расходомерных устройств перед, входы вторых - после установленных в них сопел, блок управления и регистрации, подключенный к соответствующим входам управляемых клапанов, соответствующему входу системы зажигания и выходам датчиков давления.

Способ измерения состояния множества пространственно разнесенных машинных частей, подверженных износу и испускающих акустические сигнатуры, включает следующие шаги: (а) оптическое обнаружение акустических свойств множества машинных частей, подверженных износу, и получение из них обнаруженных сигналов; (b) разделение обнаруженных сигналов на первую последовательность соответствующих пространственных сегментов вдоль пространственно разнесенных машинных частей и, для каждого пространственного сегмента, разделение обнаруженного сигнала на временной сегмент с записью акустических свойств пространственного сегмента за протяженный временной период; (с) разделение каждого временного сегмента на последовательность субсегментов и преобразование субсегментов в частотную область в соответствующие частотные субсегменты; (d) комбинирование частотных субсегментов в пределах пространственного сегмента с получением соответствующего комбинированного частотного субсегмента с пониженным уровнем шумов; и (е) определение основной частоты испускаемых акустических сигнатур, присутствующих в комбинированном частотном субсегменте, и ее гармоник.

Изобретение относится к испытательной технике, в частности к оборудованию для исследования работы фрезерных рабочих органов горных торфяных машин. Лабораторный стенд для исследования прямоугольного и косоугольного резания фрезой торфяных монолитов состоит из жестко заделанной в пол колонны с перемещающейся по ней плитой с установленным электродвигателем, приводящим во вращение фрезу через муфту и промежуточный вал, и рельсового пути, по которому перемещается тележка с торфяным монолитом, приводящаяся в движение тросом от электродвигателя через две коробки передач и лебедку, и дополнительно снабжен механизмом поворота плиты, установленным на торце колонны и представляющим собой ось, вокруг которой может поворачиваться плита с фрезой и приводом на угол от 0 до 45°, который определяется по угломерной шкале с возможностью фиксации в заданном положении, S-образным тензодатчиком и цифровой тензостанцией-анализатором.

Изобретение относится к испытательной технике и может быть использовано для испытаний рулевых машинок с имитацией эксплуатационных нагрузок. Стенд содержит стол, систему нагружения, жестко установленную на столе, узлы крепления рулевой машины.

Стенд содержит опору, подвешенный к ней вертикально ориентированный отрезок конвейерной ленты с прикрепленными к нему съемными перегородками с возможностью размещения на них груза, тяговый механизм в виде винтовой стяжки, измерительное приспособление в виде динамометра. На вертикально ориентированном участке опоры закреплена двойная измерительная шкала с горизонтально и вертикально ориентированными делениями, размещенная у одного из бортов ленты и с перекрытием ее по горизонтали.

Изобретение относится к машиностроению, а именно к испытательным устройствам, и предназначено для моделирования работы проточной части безвального насосного агрегата с различными геометрическими параметрами. Нагнетатель для испытаний элементов рабочего колеса безвального насоса включает нагнетательный и всасывающий патрубки с фланцами, корпус с ребрами жесткости, гильзу, первый и второй подшипниковые узлы.

Изобретение относится к машиностроению и может быть использовано для проведения параметрических испытаний безвальных насосов, их масштабных моделей и элементов рабочих колес. Стенд для испытаний содержит замкнутый контур, включающий последовательно соединенные трубопроводами (Т) расходный бак (Б), всасывающий Т, нагнетательный Т и мерный Б, запорно-регулирующую арматуру и контрольно-измерительные устройства.

Изобретение может быть использовано при осмотре состояния узлов двигателя транспортного средства с поперечным расположением дизельного двигателя и приводом на передние колеса. Способ визуальной проверки состояния зубчатого ремня газораспределительного механизма (ГРМ) транспортного средства (5) заключается в открывании капота (6) моторного отсека, снятии защитной крышки ремня (1) ГРМ, проворачивании коленчатого вала (2) двигателя (4) и наружного визуального осмотра состояния ремня (1) ГРМ. После снятия защитной крышки ремня (1) ГРМ переднее колесо (7) транспортного средства со стороны ремня (1) ГРМ вывешивается путем поддомкрачивания передней боковой части транспортного средства (5). Включают замок зажигания и поворачивают передние колеса (7) по ходу в сторону расположения ремня (1) ГРМ с выходом за габариты боковой поверхности транспортного средства (5). Включают передачу коробки (10) передач вперед с наименьшим передаточным отношением. Выключают замок зажигания и проворачивают вручную повернутое вывешенное переднее колесо (7) вперед с одновременным наружным визуальным осмотром состояния перемещающегося зубчатого ремня (1) ГРМ. Технический результат заключается в повышении точности определения реального состояния ремня ГРМ. 2 ил.
Наверх