Корабельная установка для имитационной ракеты

Изобретение относится к области ракетной техники и используется для проведения испытаний и отработки в штатных условиях корабельного зенитного ракетного комплекса в части проведения облетов. Корабельная установка содержит поворотное устройство и размещенную на нем имитационную ракету. Поворотное устройство представляет собой рамную конструкцию, в задней части которой установлен механизм поворота имитационной ракеты в горизонтальной плоскости, обеспечивающий фиксацию ракеты в одном из пяти положений. Также имеются средства фиксации положения имитационной ракеты в одном из четырех положений по вертикали. Имитационная ракета состоит из головки самонаведения, отсека с размещенным в нем блоком инерциальной системы управления и задней крышки с электрическими соединителями. Фиксация в одном из пяти возможных положений имитационной ракеты по горизонтали производится на углы от 0° до 180° с дискретностью 45°, где 0° - положение носовой части имитационной ракеты перпендикулярно выбранному борту корабля. Фиксация в одном из четырех возможных положений имитационной ракеты по вертикали производится на углы от 0° до 45° с дискретностью 15°. Предложенное изобретение обеспечивает возможность ориентирования имитационной ракеты в горизонтальной и вертикальной плоскости без изменения курса корабля, а также не требует использования герметичного контейнера для ракеты. 7 з.п. ф-лы, 15 ил.

 

Изобретение относится к области ракетной техники и используется для проведения испытаний и отработки в штатных условиях корабельного зенитного ракетного комплекса в части проведения облетов.

Цель изобретения - обеспечение проверок контура управления ракетного комплекса для кораблей с захватом радиолокационной головкой самонаведения (РГС) сигнала, отраженного от цели.

Для этой цели применяются учебно-действующие ракеты, с использованием которых связан ряд технических проблем.

Использование негерметичных учебно-действующих ракет вызывает необходимость применения их совместно с герметичным контейнером. Это приводит к увеличению массы всей конструкции и ее габаритов. Ввиду больших габаритов возникают трудности с доставкой ракеты на корабль (необходим специальный транспорт) и такелажными работами.

Кроме того, возникают сложности с ориентированием на корабле крупногабаритной ракеты, поскольку после монтажа ракеты на корабле уже нет возможности изменить ее ориентацию по отношению к кораблю имеющимися средствами.

Одновременно с этим нужно учитывать, что, как правило, облеты проводятся по обоим бортам корабля. В связи с этим в процессе проведения испытаний возникает необходимость совершения дополнительного маневра для смены борта, что приводит к изменению курса корабля, к увеличению времени проведения испытаний, увеличенному расходу горючего.

Из уровня техники известны решения, которые направлены на решение вышеуказанных технических проблем. Так, например, известна корабельная пусковая установка, содержащая платформу с возможностью вращения вокруг вертикальной оси для наведения в горизонтальной плоскости и механизм в виде пары винтовых передач для наведения в вертикальной плоскости [патент RU 2256582 С1, опубликован 20.07.2005]. Известная из указанного патента установка не обеспечивает необходимый угол поворота ракеты в вертикальной плоскости.

Также известна пусковая корабельная установка для ракет и проведения испытаний, содержащая опорную платформу в виде рамы, и регулируемые по длине тяги [патент RU 2232968 С1, опубликован 20.07.2004]. Известная установка не предполагает изменение ориентации пусковой установки относительно горизонтальной плоскости корабля.

Заявляемое изобретение направлено на решение вышеуказанных проблем. В результате применения заявляемой корабельной установки достигаются следующие технические результаты:

- возможность ориентирования расположенной в корабельной установке имитационной ракеты в горизонтальной и вертикальной плоскости без изменения курса корабля;

- отсутствие необходимости использования герметичного контейнера для ракеты;

Вышеуказанные технические результаты достигаются за счет того, что:

Корабельная установка для имитационной ракеты содержит поворотное устройство и размещенную на нем имитационную ракету. Поворотное устройство представляет собой рамную конструкцию, в задней части которой установлен механизм поворота имитационной ракеты в горизонтальной плоскости, обеспечивающий фиксацию ракеты в одном из пяти положений, состоящий из монтажной плиты, расположенной над ней поворотной плиты и механизма вращения, размещенного между ними. На поворотной плите установлены две вертикальные опоры, на вершинах которых размещены узлы крепления имитационной ракеты, установленной в них в точке центра масс, а в основании которых шарнирно закреплены две тяги с продольными направляющими пазами и находящимися в них крепежными элементами, обеспечивающими фиксацию положения имитационной ракеты в одном из четырех положений по вертикали. Имитационная ракета состоит из головки самонаведения, отсека с размещенным в нем блоком инерциальной системы управления и задней крышки с электрическими соединителями, а также включает средства для фиксации в продольных направляющих пазах тяг.

Фиксация в одном из пяти возможных положений имитационной ракеты по горизонтали производится на углы от 0° до 180° с дискретностью 45° и точностью +/-30', где 0° - положение носовой части имитационной ракеты перпендикулярно выбранному борту корабля.

Фиксация в одном из четырех возможных положений имитационной ракеты по вертикали производится на углы от 0° до 45° с дискретностью 15° и точностью +/-30'.

Рамная конструкция имеет монтажные узлы для монтажа на штатные узлы корабля.,

В углах передней части рамной конструкции имеются узлы фиксации защитного кожуха, представляющие собой направляющие уголки, выполненные с возможностью складывания.

Корабельная установка для имитационной ракеты содержит защитный кожух, выполненный в виде каркаса, обшитого листовым материалом, имеющего такелажные узлы в верхней части и узлы фиксации к рамной конструкции поворотного устройства в нижней части.

Рамная конструкция может быть выполнена сварной или с помощью болтового соединения.

Поворотная плита выполнена с возможностью размещения и фиксации на ней блока аппаратуры.

Конструкция и принцип работы заявляемой корабельной установки для имитационной ракеты поясняется с помощью чертежей:

Фиг. 1 - общий вид корабельной установки под защитным кожухом;

Фиг. 2 - защитный кожух;

Фиг. 3 - поворотное устройство с имитационной ракетой;

Фиг. 4 - поворотное устройство с имитационной ракетой, вид спереди;

Фиг. 5 - поворотное устройство с имитационной ракетой, вид сверху;

Фиг. 6 - ниша для размещения провода заземления и элементов фиксации, вид сверху;

Фиг. 7 - узел фиксации защитного кожуха;

Фиг. 8 - монтажный узел для монтажа корабельной установки на штатные опорные узлы корабля;

Фиг. 9 - монтажный узел для монтажа корабельной установки на штатные опорные узлы корабля, вид в изометрии;

Фиг. 10 - механизм поворота в горизонтальной плоскости;

Фиг. 11 - механизм поворота в вертикальной плоскости;

Фиг. 12 - механизм фиксации поворота в горизонтальной плоскости;

Фиг. 13 - механизм фиксации поворота в вертикальной плоскости;

Фиг. 14 - имитационная ракета, вид сзади;

Фиг. 15 - имитационная ракета без задней крышки, вид сзади.

На фигуре 1 показан общий вид корабельной установки для имитационной ракеты. Корабельная установка состоит из поворотного устройства 1 с защитным кожухом 2, под которым на поворотном устройстве 1 размещена имитационная ракета 3 (фиг. 3) для морского комплекса. В таком виде корабельная установка находится как в процессе хранения до и после испытаний, так и в процессе транспортирования на корабль и к месту хранения.

Имитационная ракета согласно заявляемому изобретению герметична. Имитационная ракета представляет собой часть ракеты, содержащую головку самонаведения, отсек с инерциальной системой управления (ИСУ) и заднюю крышку.

Защитный кожух 2 (Фиг. 2) предназначен для обеспечения сохранности имитационной ракеты 3 (Фиг. 3) при хранении, транспортировании и такелажных работах, а также обеспечивает проведение такелажных работ. Конструкция защитного кожуха представляет собой каркас прямоугольной формы, обшитый листовым и профильным материалом, и состоит из такелажных узлов 4, направляющих усилителей 5 и шпилек стопорных 6, служащих для фиксации защитного кожуха 2 к ножкам 7 (Фиг. 3) поворотного устройства 1.

Поворотное устройство 1 (Фиг. 3) состоит из рамной конструкции 8 из продольных 9 (Фиг. 6), поперечные 10 (Фиг. 4, 6) и опорных балок 11. На концах продольных балок 9 размещены ножки 7 (Фиг. 4), служащие для размещения поворотного устройства 1 на средствах транспортирования - машинах материально-технического обслуживания (МТО). Также на концах продольных балок 9 в передней части поворотного устройства 1 установлены кронштейны 12 (Фиг. 7) и направляющие уголки 13 для монтажа защитного кожуха (2). Направляющие уголки 13 складываются относительно кронштейнов 12 по оси вращения 14 и фиксируются фиксаторами 15 в отверстиях «а» при положении I и в отверстиях «б» при положении II.

Отверстия «а» и «б» выполнены в направляющих уголках 13, отверстия «в» - в кронштейнах 12. Для выбора нужного положения нужно совместить отверстие «а» или «б» на каждом направляющем уголке 13 с отверстием «в» в соответствующем кронштейне 12.

По краям опорных балок 11 смонтированы узлы крепления 16 корабельного устройства к штатным опорным элементам 20 корабля (Фиг. 3, 4, 8), два из которых имеют направляющие штифты 17, расположенные на одной из сторон рамной конструкции. Узлы крепления 16 (Фиг. 2, 3) состоят из механизма стопорения 18, поворотного кулачка 19 и устанавливаются на опорные элементы 20 корабля. Поворот кулачка 19 на угол 90° рычагами 57 (фиг. 9) обеспечивает крепление корабельной установки 1 на штатных опорных элементах 20 корабля, с последующей затяжкой втулок стопорных 21 рычагами 25. Механизм стопорения 18 состоит из втулки стопорящей 21, с зубчатым колесом 22, ограничителя 23, пружины 24, расположенных в корпусе узла крепления 18 и рычага 25. Стопорение каждой втулки стопорной 21 от раскручивания происходит через зубчатое колесо 22, в которое упирается подпружиненный ограничитель 23.

В передней части рамной конструкции 8 выполнена ниша 26 (Фиг. 3, 6) для размещения провода заземления 27 и элементов фиксации 28, служащих для фиксации блока аппаратуры 29. Ниша 26 с оборудованием закрывается крышкой 30 (Фиг. 5) и фиксируется замками 31 (Фиг. 5, 6).

В задней части рамной конструкции 8 установлен механизм вращения 32 (Фиг. 3, 10), обеспечивающий поворот имитационной ракеты 3 в горизонтальной плоскости с фиксацией в пяти положениях на углы «а» (Фиг. 5).

Механизм вращения 32 (Фиг. 10) установлен на монтажную 33 и поворотную 34 плиты и состоит из прижима 35 и подшипников 36 (Фиг. 11). В центре монтажной плиты 33 расположена втулка 37 для обеспечения центрирования поворотной плиты 34. На оси поворотной плиты 34 установлен подшипник 38, который расположен между втулкой 37 и фланцевой частью оси 39, зафиксированный гайкой 40. На поворотной плите 34 размещен механизм фиксации 41 (Фиг. 10), состоящий из стакана 42 (Фиг. 12) с резьбовым отверстием «г» и фиксатора 43. Фиксация поворотной плиты 34 на угол «а» (Фиг. 5) происходит фиксатором 43, который вворачивается по резьбе стакана 42 (Фиг. 12) и фиксируется во втулке 44 монтажной плиты 33.

На поворотной плите 34 установлены две вертикальные опоры 45 (Фиг. 3, 4). Каждая опора 45 выполнена треугольной формы из профильного материала, на вершине каждой вертикальной опоры размещен узел крепления имитационной ракеты в виде кронштейна 46 (Фиг. 11). В корпусе кронштейна

46 размещен подшипник 47, обеспечивающий вращения имитационной ракеты 3 в вертикальной плоскости на углы «β» (Фиг. 3) в четырех положениях относительно ее центра масс. Имитационная ракета 3 крепится в подшипниках 47 через оси 48. К профильному элементу каждой вертикальной опоры в нижней ее части шарнирно прикреплена тяга 49, для чего предусмотрено отверстие для, ее монтажа. Тяги 49 обеспечивают перемещение двух шпилек 50 (Фиг. 13) имитационной ракеты 3 по пазам «д» и фиксации их в отверстиях «е» на углы «β» (Фиг. 3, 13). Фиксация происходит вворачиванием барашков 51 в отверстия «е» тяг 49 по резьбовой части шпилек 50, расположенных на боковых торцевых поверхностях задней крышки 52 имитационной ракеты 3.

На задней крышке 52 размещены крышка 53 (Фиг. 14) и пробка 54, закрывающая отверстие для проверки имитационной ракеты на герметичность. Под крышкой 53 расположены электрические соединители 55 и силикагель-осушитель 56 (фиг. 15).

Заявляемое изобретение является промышленно-применимым и осуществляется следующим образом.

Корабельная установка хранится и транспортируется к кораблю на машине материально-технического обслуживания (МТО). Корабельная установка закреплена на специальной платформе машины МТО. Для загрузки корабельной установки на корабль (такелажные работы) используются штатные средства служб технического обслуживания ВМФ. Работы выполняются за такелажные узлы 4 защитного кожуха 2.

Монтаж корабельной установки на корабль производят таким образом, чтобы продольные балки рамной конструкции располагались перпендикулярно бортам корабля. Крепление производится узлами крепления 16 к штатным опорным элементам 20, находящимся на палубе корабля (предназначенным для установки технологического оборудования, обеспечивающего загрузку боекомплекта в погреб корабля).

После этого производят заземление проводом заземления, хранящимся в нише 26. Далее выполняют демонтаж защитного кожуха 2, для чего в нижней части защитного кожуха вынимают стопорные шпильки 6 из отверстий на усилителях 5 и на ножках 7. Демонтаж кожуха производится за такелажные узлы 4. После демонтажа защитного кожуха производят установку и фиксацию на поворотной плите 34 блока аппаратуры 29 для обеспечения электропитания и режимов работы имитационной ракеты с помощью элементов крепления 28. Кроме того, производят складывание направляющих уголков 13 защитного кожуха 2 с последующей их фиксацией в сложенном положении. На задней крышке 52 имитационной ракеты 3 демонтируют крышка 53 и к электрическим соединителям 55 стыкуют электрические соединители, выходящие от блока аппаратуры 29.

Корабельная установка обеспечивает одновременное ориентирование имитационной ракеты в горизонтальной и вертикальной плоскостях (по курсу и тангажу) с фиксацией в определенных положениях.

Поворот имитационной ракеты 3 в горизонтальной плоскости осуществляется за счет поворота вручную поворотной плиты 34. Далее выполняют фиксацию в одном из пяти возможных положений фиксатором 43 во втулку 44 монтажной плиты 33 на углы от 0° до 180° с дискретностью 45° и точностью +/-30', где 0° - положение носовой части имитационной ракеты 3 перпендикулярно правому (левому) борту корабля. Так, на фиг. 5 фиксируемые положения имитационной ракеты I и V соответствуют направлениям на правый и левый борта корабля, а положение III - на нос корабля.

Имитационная ракета 3 расположена на вертикальных опорах 45 с помощью размещенных в центре масс имитационной ракеты осей вращения 48, установленных в подшипниках 47 опор 45.

Поворот имитационной ракеты 3 в вертикальной плоскости осуществляют вручную, одновременно с поворотом происходит скольжение шпилек 50, размещенных на боковых торцевых поверхностях задней крышки 52, в пазах (д) тяг 49. Скольжение каждой шпильки 50 происходит до отверстия (е), соответствующего одному из четырех возможных положений с фиксацией этого положения при помощи вворачивания барашков 51 в отверстия (е) по резьбе шпильки 50, на углы от 0° до 45° с дискретностью 15° и точностью +/-30'.

Полученные результаты испытаний используются для отработки зенитно-ракетного комплекса корабля. После проведения испытаний выполняется обратная последовательность действий, включающая демонтаж корабельной установки со штатных опорных элементов 20 корабля, погрузку, транспортировку и хранение корабельной установки на машине МТО.

Размеры корабельной установки (Д × Ш × В)=2500 × 1000 × 1160 мм. Высота изделия без защитного кожуха в рабочем положении под углом 45° - 1900 мм, не более. Масса изделия не превышает 1000 кг.

За счет герметичности имитационной ракеты отсутствует необходимость в герметичном контейнере, что приводит к уменьшению ее массы и габаритов, что в конечном итоге позволяет транспортировать и хранить ракету на машине МТО комплекса базовых средств технического обслуживания (КБСТО). Имитационная ракета компактна, поскольку представляет собой только часть ракеты, содержащую головку самонаведения, инерциальную систему управления (ИСУ) и заднюю крышку.

Предложенная корабельная установка компактна, мобильна, монтируется с помощью штатных средств кораблей ВМФ, обеспечивает проведение испытаний без смены курса корабля.

За счет конструктивной взаимосвязи имитационной ракеты, поворотного устройства и защитного кожуха решаются проблемы хранения, транспортирования, выполнения такелажных работ, монтажа и демонтажа корабельной установки.

1. Корабельная установка для имитационной ракеты, содержащая поворотное устройство и размещенную на нем имитационную ракету, при этом поворотное устройство представляет собой рамную конструкцию, в задней части которой установлен механизм поворота имитационной ракеты в горизонтальной плоскости, обеспечивающий фиксацию ракеты в одном из пяти положений, состоящий из монтажной плиты, расположенной над ней поворотной плиты и механизма вращения, размещенного между ними, на поворотной плите установлены две вертикальные опоры, на вершинах которых размещены узлы крепления имитационной ракеты, установленной в них в точке центра масс, а в основании которых шарнирно закреплены две тяги с продольными направляющими пазами и находящимися в них крепежными элементами, обеспечивающими фиксацию положения имитационной ракеты в одном из четырех положений по вертикали, при этом имитационная ракета состоит из головки самонаведения, отсека с размещенным в нем блоком инерциальной системы управления и задней крышки с электрическими соединителями, а также включает средства для фиксации в продольных направляющих пазах тяг.

2. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что фиксация в одном из пяти возможных положений имитационной ракеты по горизонтали производится в диапазоне от 0° до 180° с дискретностью 45° и точностью +/-30', где 0° соответствует положению носовой части имитационной ракеты перпендикулярно выбранному борту корабля.

3. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что фиксация в одном из четырех возможных положений имитационной ракеты по вертикали производится в диапазоне от 0° до 45° с дискретностью 15° и точностью +/-30'.

4. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что рамная конструкция имеет монтажные узлы для монтажа на штатные опорные узлы корабля.

5. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что в углах передней части рамной конструкции имеются узлы фиксации защитного кожуха, представляющие собой направляющие уголки, выполненные с возможностью складывания.

6. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что дополнительно содержит защитный кожух, выполненный в виде каркаса, обшитого листовым материалом, имеющего такелажные узлы в верхней части и узлы фиксации к рамной конструкции поворотного устройства в нижней части.

7. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что рамная конструкция может быть выполнена сварной или с помощью крепежных соединений, например болтовых соединений.

8. Корабельная установка для имитационной ракеты по п. 1, отличающаяся тем, что поворотная плита выполнена с возможностью размещения и фиксации на ней блока аппаратуры для обеспечения электропитания и режимов работы имитационной ракеты.



 

Похожие патенты:

Изобретение относится к области авиации и ракетостроения, а именно к средствам имитации летательных аппаратов для проведения летных испытаний и обучения персонала. Способ состоит в том, что макет формируют из базовых элементов, составляющих зону регулярных сечений, и макетов дополнительных элементов конструкции, таких как головной обтекатель, воздухозаборное устройство и аэродинамические поверхности.
Изобретение относится к вооружению, в частности к практическим управляемым ракетам. Практическая управляемая ракета содержит двигатель, аппаратуру управления, аэродинамические стабилизаторы и массогабаритный макет боевой части.

Изобретение относится к области ракетной техники и может быть использовано на полигонах в качестве мишени для обучения стрельбе боевых расчетов зенитных ракетных комплексов, а также при демонстрационных пусках. .

Изобретение относится к средствам отработки и испытаний авиационного вооружения. .

Изобретение относится к области судостроения и касается разработки безэкипажных катеров (БЭК), целевое назначение которых меняется в зависимости от размещаемой на них полезной нагрузки. БЭК содержит съемные кормовой и носовой модули сменной полезной нагрузки.

Изобретение относится к системам погрузки оружия на корабли, в частности к системам погрузки ракет в транспортно-пусковых стаканах в вертикальные пусковые установки. В систему погрузки оружия, включающую вертикальную пусковую установку с крышкой, грузоподъемный кран, выносной пульт управления с формирователем команды на опускание крюка крана и транспортно-пусковой стакан, дополнительно введены штепсельный разъем, гировертикаль, лазерный дальномер, отражатель и размещенные в выносном пульте управления переключатель режимов работы, два пороговых устройства, генератор импульсов, три блока И, два блока ИЛИ, блок НЕ и устройство электронного документирования.

Изобретение относится к области бесконтактных способов ведения боевых действий. Способ бесконтактного ведения боевых действий включает этап осуществления разведывательных действий, этап подготовки сил и средств для нанесения поражения разведанных объектов противника и этап доставки с использованием ракетоносцев-доставщиков в зону поражающего радиуса действия вооружения для уничтожения разведанных целей противника.

Изобретение относится к области кораблестроения, а именно к кораблям, назначением которых является обнаружение подводных объектов. Корабль освещения подводной обстановки оснащен гидроакустическим излучателем с гидроакустической антенной, опускаемой под воду на заданную глубину, комплектом пассивных автономных гидроакустических станций (АГС), способных обнаруживать зондирующие сигналы гидроакустического излучателя и эхосигналы, отраженные от подводных объектов, средствами измерения характеристик гидроакустических условий в районе плавания, радиоприемной аппаратурой и аппаратурой гидроакустической связи для приема сообщений от АГС, ЭВМ со специальной программой, позволяющей до начала работы рассчитывать необходимое количество, координаты скрытно устанавливаемых АГС, траекторию маневрирования корабля в процессе расстановки АГС, проходящую через все рассчитанные позиции АГС, оптимальные для текущих гидроакустических условий глубины установки антенны излучателя и АГС, а в процессе работы вычислять траектории обнаруженных подводных объектов и определять их координаты и параметры движения.

Изобретение относится к устройствам активной помехи, которое может быть использовано отслеживаемым объектом в качестве прибора подавления гидроакустических средств наблюдения за данным объектом. Акустический прибор содержит отсеки головной и кормовой, герметично соединенные между собой.
Способ охраны подводного объекта с применением подводного аппарата-охранителя (ПАО) заключается в подготовке ПАО к пуску путем проверки бортовой системы управления (БСУ), в которую вводят программу движения и задание. Осуществляют пуск ПАО с охраняемого объекта или носителя, включают БСУ в работу, по командам которой управляют движением ПАО.

Изобретение относится к военной технике и может быть использовано в ракетных пусковых установках (ПУ). Модульная многоместная корабельная ПУ вертикального пуска содержит бронированное основание с броневой панелью с облицовкой со слоем теплоизоляции и слоем из стеклоткани, ячейками для установки транспортно-пусковых контейнеров с защитной крышкой с приводом ее открывания, защитным экраном, коробчатым корпусом из листовой высокопрочной стали, облицовкой со слоями из теплоизоляции и стеклоткани.
Наверх