Электродуговой плазмотрон для обработки поверхностей деталей



Электродуговой плазмотрон для обработки поверхностей деталей
Электродуговой плазмотрон для обработки поверхностей деталей
H05H1/26 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2763161:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" (ЛГТУ) (RU)

Изобретение относится к области электротермической техники, а именно к электродуговым устройствам, вырабатывающим плазму. Технический результат - повышение равномерности потока плазмы, уменьшение рассеивания энергии плазмы при движении к обрабатываемой поверхности детали. Электродуговой плазмотрон содержит сферический полый корпус, выполненный из непроводящего ток тугоплавкого материала, образующий рабочую камеру. В корпусе перпендикулярно продольной оси выполнены два расположенных друг против друга отверстия, в которых установлены анодный и катодный электроды, подключенные к блокам зажигания дуги и питания с регулируемым по уровню и постоянным по знаку напряжением. На внешней поверхности корпуса расположены на одной оси два полюса с обмоткой, подключенной к регулируемому источнику питания, охваченные замкнутым магнитопроводом, выполненным в виде половины разрезанного вдоль трубчатого цилиндра. Блок задания имеет два выхода, первый соединен с управляющим входом нагнетателя плазмообразующего газа, регулирующим его расход, а второй - соединен с входом блока питания, регулирующим ток в обмотке электромагнита. Перемещающее устройство корпуса содержит исполнительные приводы для поворота продольной оси корпуса в вертикальном и горизонтальном направлениях. 1 ил.

 

Известен электродуговой плазмотрон, содержащий анодный и катодный блоки, расположенные соосно вдоль оси плазмотрона, разделенные изолятором, в котором имеется узел подачи рабочего плазмообразующего газа в электро-газоразрядную камеру, при этом в анодном и катодном блоках имеются входное и выходное отверстия и полости для прохождения охлаждающего агента, кроме того в анодном блоке имеется радиальное отверстие для ввода порошкового материала. В анодном и катодном блоках дополнительно имеются отверстия, в которых закреплены штуцеры, при этом дополнительные отверстия расположены с диаметрально противоположной стороны относительно входного анодного и катодного отверстий, при этом дополнительные штуцеры соединены дугообразным электроизоляционным трубопроводом для прохождения охлаждающего агента из анодного в катодный блок, концы которого закреплены на анодном выходном и катодном входном штуцерах [1].

Недостатком данного устройства является сложность конструкции, и сложность регулирования подачи энергии и регулирования температуры в объеме электро-газоразрядной камеры.

Наиболее близким техническим решением к предлагаемому изобретению является электродуговой плазмотрон, содержащий расположенный горизонтально трубчатый корпус, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует продольную щелевую камеру, анодный и катодный электроды, подключенные к блоку питания с регулируемым по уровню и постоянным по знаку напряжением, блок зажигания дуги, узел подачи рабочего плазмообразующего газа в щелевую камеру, трубопровод для прохождения охлаждающего агента, в трубчатом корпусе перпендикулярно оси щелевой камеры выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом установлен катодный электрод, один торцевой конец трубчатого корпуса соединен с узлом подачи рабочего плазмообразующего газа, соосно с трубчатым корпусом установлен трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости подвижного трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью трубчатого корпуса расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, причем ось полюсов расположена перпендикулярно по отношению к оси положения электродов, трубчатый магнитопровод выполнен подвижным и соединен с приводом возвратно-поступательного движения, трубопровод для прохождения охлаждающего электроды агента выполнен в виде каналов в стенке трубчатого корпуса, трубчатый корпус закреплен на подвижной платформе, имеющей приводы возвратно-поступательного движения вверх-вниз, вправо-влево [2].

Недостатком данного устройства является значительное рассеивание тепловой энергии при движении плазмы к обрабатываемой поверхности, так как тепловые потоки не сконцентрированы, и при выходе из корпуса через отверстие большого диаметра имеют неравномерную температуру, частично рассеиваются в воздухе и не в полной мере достигают поверхности обрабатываемой детали. Это снижает эффективность действия плазмотрона.

Задачей изобретения является обеспечение при обработке поверхностей деталей наиболее эффективного использования энергии плазмы, за счет подачи выработанной в камере плазмы через горелку, на выходе которой обеспечивается более равномерный по температуре сконцентрированный потока плазмы, подаваемый на обрабатываемую поверхность.

Решение поставленной задачи достигается тем, что электродуговой плазмотрон, содержит корпус, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует рабочую камеру, в корпусе перпендикулярно его продольной оси выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом установлен катодный электрод, электроды подключены к блоку зажигания дуги и блоку питания с регулируемым по уровню и постоянным по знаку напряжением, с камерой соединен нагнетатель плазмообразующего газа, на внешней поверхности корпуса расположены напротив друг друга северный и южный магнитные полюсы, причем ось магнитных полюсов расположена перпендикулярно по отношению к оси положения электродов, окончания полюсов замкнуты магнитопроводом, на полюсах установлена обмотка, подключенная к другому блоку питания с регулируемым по уровню и постоянным по знаку напряжением, корпус закреплен в перемещающем устройстве, корпус соединен с охлаждающим устройством, корпус выполнен в виде полой сферы, соосно с продольной осью корпуса в нем выполнены два сквозных отверстия, выходное отверстие в корпусе соединено с соплом, имеющим вид конического полого постепенно сужающегося к выходному концу цилиндра, выполненного из непроводящего ток тугоплавкого материала, а длина сопла не менее, чем в три раза превышает внутренний диаметр выходного конца сопла, входное отверстие в корпусе соединено с одним концом другого трубчатого цилиндра выполненного из непроводящего ток тугоплавкого материала, а второй конец трубчатого цилиндра соединен через гибкий полый трубопровод с нагнетателем плазмообразующего газа, управляющий вход нагнетателя плазмообразующего газа соединен с первым задающим расход плазмообразующего газа выходом блока задания, управляющий вход второго блока питания соединен со вторым задающим ток в обмотке полюсов выходом блока задания, ось полюсов расположена, между осью положения электродов и выходным отверстием в корпусе, перемещающее устройство корпуса содержит исполнительные приводы для поворота продольной оси корпуса в вертикальном и горизонтальном направлениях, охлаждающее устройство содержит установленный на внешней поверхности корпуса экран, выполненный из материала с высокой теплоотдачей, в котором имеется трубчатая спираль, выходы которой соединены с устройством подачи охлаждающего агента.

На чертеже приведена конструкция плазмотрона.

Устройство содержит сферический полый корпус 1, выполненный из непроводящего ток тугоплавкого материала, образующей рабочую камеру. В стенке сферического корпуса 1 выполнены сквозные расположенные соосно друг другу и перпендикулярно продольной оси корпуса два отверстия, в которых находятся анодный электрод 2 и катодный электрод 3, подключенные к выходам блока питания 4 с регулируемым по уровню и постоянным по знаку напряжением. К электродам 2 и 3 подключены также выходы устройства электродугового разряда 5 для зажигания дуги.

На внешней поверхности сферического корпуса расположены друг против друга на одной оси два полюса 6 и 7, замкнутых магнитопроводом 8, выполненным в виде половины разрезанного вдоль трубчатого цилиндра, охватывающего полюса и корпус 1, причем ось полюсов 6 и 7 расположена, перпендикулярно по отношению к оси положения электродов 2, 3. На полюсах 6, 7 размещена обмотка 9, подключенная к выходам другого регулируемого блока питания напряжением постоянного тока 10. По продольной оси корпуса 1 выполнено выходное отверстие 11, а в другой диаметрально противоположной части корпуса соосно выполнено входное отверстие 12. Ось полюсов 6 и 7 расположена между осью положения электродов 2, 3 и выходным отверстием 11 в корпусе 1. Выходное отверстие 11 в корпусе 1 соединено с одним концом полого конического цилиндра, являющегося соплом 13, выполненным из непроводящего ток тугоплавкого материала, причем внутренний диаметр выходного конца сопла меньше внутреннего диаметра входного конца сопла, длина сопла 13 не менее, чем в три раза превышает внутренний диаметр выходного конца сопла 13. Входное отверстие 12 в сферическом корпусе 1 соединено с одним концом другого трубчатого цилиндра 14, выполненного из непроводящего ток тугоплавкого материала, второй конец трубчатого цилиндра 14 соединен через гибкий полый трубопровод 15 с нагнетателем плазмообразующего газа 16. Управляющий вход нагнетателя плазмообразующего газа 16 соединен с первым задающим расход плазмообразующего газа выходом блока задания 17, управляющий вход второго блока питания 10 соединен со вторым задающим ток в обмотке электромагнита 9 выходом блока задания 17. Корпус 1 соединен с перемещающим устройством 18. Перемещающее устройство 18 может быть выполнено следующим образом. Оно содержит стержень 19, один конец которого жестко соединен с корпусом 1, а на втором конце стержня находится шарнирная пара 20, стержень соединен с исполнительными приводами 21, обеспечивающими поворот корпуса вертикальном и горизонтальном направлениях. На поверхности корпуса 1 установлен теплоохлаждающий экран 22, в котором имеется трубчатая спираль 23, выходы которой соединены с устройством подачи охлаждающего агента 24.

Устройство работает следующим образом.

К электродам аноду 2 и катоду 3 от блока питания 4 подводится напряжение, устройство электродугового разряда 5 инициирует электродуговой разряд и зажигается дуга. В полость корпуса 1 от нагнетателя 16 через гибкий полый трубопровод 15, трубчатый цилиндр 14 и входное отверстие 12 подается плазмообразующий газ под давлением, который проходит через дугу, и ионизируется с образованием плазмы, которая выходит из сферического корпуса 1 через выходное отверстие 11 в сопло 13. Под действием движущегося плазмообразующего газа дуга растягивается. Для предотвращения ее разрыва подключают обмотку возбуждения 9, установленную на полюсах 6 и 7, к источнику регулируемого напряжения постоянного тока 10. Ток возбуждения, протекая по обмотке 9, создает электромагнитное поле, возникает электромагнитная сила, действующая на дугу, в направлении, противоположном направлению движения плазмообразующего газа, и стабилизирующая положение дуги.

При увеличении сигнала задания, поступающего с первого выхода блока задания 17 на вход нагнетателя плазмообразующего газа 16, увеличивается расход плазмообразующего газа. Для предотвращения разрыва горящей дуги увеличенным потоком плазмообразующего газа, увеличивают сигнал задания, поступающего с второго выхода блока задания 17 на вход источника 10, соответственно, увеличивают напряжение на выходе источника 10, в результате возрастает ток возбуждения в обмотке 9, вследствие чего увеличивается величина электромагнитного потока, создаваемого полюсами 6 и 7. В результате возрастает электромагнитная сила, действующая на дугу в зоне ее горения в направлении, противоположном направлению движения плазмообразующего газа, стабилизирующая положению дуги и препятствующая ее разрыву.

Поток плазмы и тепловые потоки, проходят из корпуса 1 в сопло 13, где происходит догорание плазмообразующего газа и повышение температуры плазмы. Поскольку внутренний диаметр сопла меньше диаметра сферической камеры и сужается по направлению к выходному концу сопла 13, давление газа в полости сопла 13 будет большим, чем в сферическом корпусе 1, что также повышает равномерность распределения температуры по объему выработанной плазмы. Расположение оси полюсов 6, 7 между осью положения электродов 2, 3 и выходным отверстием в корпусе 1, позволяет лучше стабилизировать положение верхней часть дуги прямо под осью полюсов, при этом будут создаваться максимальные электромагнитные силы, стабилизирующие положение дуги.

Обрабатываемую плазмой деталь помещают в зону потока плазмы. Перемещающее устройство 18 содержит исполнительные приводы для перемещения продольной оси корпуса в вертикальном и горизонтальном направлениях, и соответственно изменение положения выхода сопла 16, что позволяет обрабатывать плазмой требуемые площади деталей сложной конструкции.

В результате догорания плазмообразующего газа в сопле 13 поток плазмы будет более равномерным по составу и по температуре. Потоки рассеивания энергии плазмы снижаются. Это позволяет более эффективно использовать энергию плазмы при обработке поверхностей деталей.

Список литературы

1. Патент РФ №2465748. Электродуговой плазмотрон / Мчедалов С.Г. Опубл. 27.10.2012. Бюл. №30.

2. Патент РФ №2713746. Электродуговой плазмотрон для обработки плоских поверхностей деталей / Мещеряков В.Н., Евсеев A.M., Пикалов В.В., Данилова О.В., Ласточкин Д.В. Опубл. 07.02.2020. Бюл. №4.

Электродуговой плазмотрон, содержащий корпус, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует рабочую камеру, в корпусе перпендикулярно его продольной оси выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом установлен катодный электрод, электроды подключены к блоку зажигания дуги и блоку питания с регулируемым по уровню и постоянным по знаку напряжением, с камерой соединен нагнетатель плазмообразующего газа, на внешней поверхности корпуса расположены напротив друг друга северный и южный магнитные полюсы, причем ось магнитных полюсов расположена перпендикулярно по отношению к оси положения электродов, окончания полюсов замкнуты магнитопроводом, на полюсах установлена обмотка, подключенная к другому блоку питания с регулируемым по уровню и постоянным по знаку напряжением, корпус закреплен в перемещающем устройстве, корпус соединен с охлаждающим устройством, отличающийся тем, что корпус выполнен в виде полой сферы, соосно с продольной осью корпуса в нем выполнены два сквозных отверстия, выходное отверстие в корпусе соединено с соплом, имеющим вид конического полого постепенно сужающегося к выходному концу цилиндра, выполненного из непроводящего ток тугоплавкого материала, а длина сопла не менее чем в три раза превышает внутренний диаметр выходного конца сопла, входное отверстие в корпусе соединено с одним концом другого трубчатого цилиндра выполненного из непроводящего ток тугоплавкого материала, а второй конец трубчатого цилиндра соединен через гибкий полый трубопровод с нагнетателем плазмообразующего газа, управляющий вход нагнетателя плазмообразующего газа соединен с первым задающим расход плазмообразующего газа выходом блока задания, управляющий вход второго блока питания соединен со вторым задающим ток в обмотке полюсов выходом блока задания, ось полюсов расположена, между осью положения электродов и выходным отверстием в корпусе, перемещающее устройство корпуса содержит исполнительные приводы для поворота продольной оси корпуса в вертикальном и горизонтальном направлениях, охлаждающее устройство содержит установленный на внешней поверхности корпуса экран, выполненный из материала с высокой теплоотдачей, в котором имеется трубчатая спираль, выходы которой соединены с устройством подачи охлаждающего агента.



 

Похожие патенты:

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму. Технический результат - упрощение конструкции, обеспечение регулирования скорости движения, температуры и количества плазмы на выходе трубчатого корпуса.

Изобретение относится к электрофизическим способам получения химически чистого пероксида водорода в форме водного раствора и может быть использовано в здравоохранении, медицине, пищевой промышленности, растениеводстве. Способ СВЧ-плазменной активации воды для синтеза пероксида водорода основан на непрерывной генерации плазмы безэлектродным факельным разрядом, который создают СВЧ-плазмотроном, генерирующим в парогазовой среде герметичной камеры направленную струю низкотемпературной плазмы инертного газа, воздействующей на обрабатываемую воду и водяной пар, возникающий в результате испарения поверхностного слоя воды под воздействием газоплазменной струи.

Изобретение относится к области плазменной техники. Технический результат – повышение надежности работы плазменно-дуговой горелки.

Устройство относится к области плазменной техники и может быть применено при разработке электронно-лучевых устройств, а также использовано в электронно-лучевой технологии, экспериментальной физике, плазмохимической технологии. Технический результат - уменьшение теплопередачи от плоского анода к высоковольтному изолятору.

Изобретение относится к области плазменной техники. Устройство для генерации сильнонеравновесной низкотемпературной плазмы импульсных газовых разрядов при атмосферном и пониженном давлении содержит твердотельный импульсный генератор с датчиком тока, разрядный колебательный контур, получающий энергию от указанного генератора, а также управляющее компьютерное устройство для регулирования ввода энергии в разрядный контур в виде коротких импульсов путем независимой и динамической регулировки частоты и скважности подачи силовых импульсов на нагрузку через контур ударного возбуждения на основании данных, полученных по обратной связи от указанных датчиков тока.

Изобретение относится к области плазменной техники. Технический результат – повышение надежности работы системы и генерирование плазмы с высокой плотностью энергии.

Изобретение может быть применено в производстве стационарных и мобильных модулей плазменных электрических генераторов электрической и тепловой энергии. Технический результат - модульность и компактность исполнения, возможность объединения отдельных генераторов в синхронно работающем моноблоке, управление генератором на аппаратно-программном уровне.

Изобретение относится к плазменной технике, к разделу способов управления плазмой. Технический результат – обеспечение возможности повышения точности управления потоками плазмы.

Группа изобретений относится к области плазмохимии, а именно к способам получения низкотемпературной плазмы и горячего газа для физико-химического воздействия на вещества и установкам для его осуществления. В группе изобретений предлагается способ и два варианта установки для получения низкотемпературной плазмы горячего и газа для физико-химического воздействия на вещества, в которых через электроды, имеющие внутренние полости элементы из пористых материалов на выходе из полостей, подают в смесительную камеру водные растворы электролитов.

Изобретение относится к космической технике, в частности к катодам-компенсаторам электрических ракетных двигателей (ЭРД) электростатического типа ускорения (Холловского и ионного типа), в частности к безэлектродным плазменным источникам электронов с волновым источником плазмы. Технический результат - обеспечение возможности использования широкого круга рабочих тел, обеспечение возможности мгновенного выхода на номинальный режим работы источника электронов; обеспечение стабильного режима работы при низких мощностях; увеличение извлекаемого электронного тока за счет улучшения механизма поглощения мощности высокочастотного электромагнитного поля плазмой; увеличение ресурса работы.

Изобретение относится к области плазменной техники, а именно обработки порошковых материалов (напыление и наплавка покрытий; сфероидизация, испарение и плазмохимическая обработка частиц порошковых материалов) и может найти применение в металлургии, плазмохимии и машиностроительной промышленности. .
Наверх