Способ восстановления изношенных режущих поверхностей рабочих органов почвообрабатывающих машин



Владельцы патента RU 2763822:

федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) (RU)

Изобретение относится к восстановлению изношенных деталей и может быть использовано при восстановлении режущих поверхностей рабочих органов почвообрабатывающих машин. Способ включает удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины из заранее подготовленных по ширине и длине восстанавливаемой режуще-лезвийной части заготовок листового проката шарикоподшипниковой стали ШХ15СГ толщиной 2,7 мм и ее приваривание к восстанавливаемому рабочему органу контактно-точечной сваркой. Упрочнение проводят газопламенным напылением. Сначала напыляют подслой термореагирующим порошком толщиной 0,05-0,15 мм, а затем основной слой износостойким порошковым сплавом толщиной 2,4 мм, при этом подслой и основной слой наносят при одних и тех же режимах напыления - давлении кислорода 0,35-0,45 МПа, давлении ацетилена 0,03-0,05 МПа, расходом кислорода 960-1100 л/ч, расходом ацетилена 900-1000 л/ч, расстоянием от среза сопла мундштука до наплавляемой поверхности 160-200 мм, расходом порошка 2,5-3 кг/ч. Перед началом напыления рабочий орган подогревают до температуры 50-100°С. Изобретение повышает износостойкость восстановленных рабочих органов при работе в условиях каштановых почв Волгоградской области с высокими показателями интенсивного абразивного изнашивания. 1 пр.

 

Изобретение относится к способу восстановления изношенных деталей с применением газопламенного напыления и может быть использовано при восстановлении рабочих органов почвообрабатывающих машин.

Одной из основных проблем, возникающих в настоящее время при обработке почвы является увеличение ресурса пахотных орудий. Для этой цели широко используются различные варианты отечественных и зарубежных глубокорыхлителей с повышенными показателями износостойкости и с заменяемой режуще-лезвийной частью (долотом).

Известен способ восстановления плужных лемехов, при котором приваривают накладной носок и лезвие лемеха. При этом накладной носок подвергается предварительной горячей формовке, а наплавка проводится по изогнутой поверхности на ширине 60-80 мм толщиной 2,0-2,5 мм (Патент на изобретение РФ №2125507, опубл. 27.01.1999).

Недостатком этого способа является возможность появления коробления поверхности накладного носка при горячей формовке, что отрицательно скажется на долговечности рабочего органа.

Известен способ термоупрочнения лемеха плуга, включающий изготовление песчаноглинистой формы, установку в форму холодильников, заливку чугуна в форму и последующее охлаждение кристаллизующегося металла, при этом устанавливают стальные холодильники объемом 2,3⋅10-8 м3 на квадратный миллиметр отбеливаемой поверхности отливки, при этом чугун с содержанием углерода 3,3-3,6%, кремния 1,27-1,59%, марганца 0,4-0,7%, магния 0,4-0,6% и серы ≤0,02% заливают в сырую песчано-глинистую форму при температуре 1360-1430°С с обеспечением отбеливания режущей кромки лемеха плуга на глубину 4-5 мм (Патент на изобретение РФ №2684129, опубл. 04.04.2019).

Известен способ получения износостойких структур в режущей кромке лемеха плуга, включающий изготовление песчано-глинистой формы, установку в форму холодильников, заливку чугуна в форму и последующее охлаждение кристаллизующегося металла, при этом устанавливают стальные холодильники объемом 1,5⋅10-8 м3 на квадратный миллиметр отбеливаемой поверхности отливки, чугун с содержанием углерода 3,3-3,6%, кремния 1,27-1,59%, марганца 0,4-0,7%, магния 0,4-0,6% и серы ≤0,02% заливают в сырую песчано-глинистую форму при температуре 1360-1430°С, осуществляют отбел режущей кромки лемеха плуга на глубину 2-3 мм (Патент на изобретение РФ №2677326, опубл. 04.04.2019).

Известен способ электроконтактного термоупрочнения лезвия почвообрабатывающего орудия из высокопрочного чугуна ВЧ50 толщиной не менее 7 мм, включающий нагрев поверхности тыльной стороны лезвия почвообрабатывающего орудия электрической дугой обратной полярности путем перемещения электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия почвообрабатывающих орудий и вращением вокруг вертикальной оси, при этом нагрев поверхности тыльной стороны лезвия осуществляют вольфрамовым электродом постоянным током, при этом диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, причем за один оборот электрода вокруг вертикальной оси линейное перемещение составляет 5 мм, а частоту вращения устанавливают 25 мин-1 (Патент на изобретение РФ №2678723, опубл. 31.01.2019).

Известен способ упрочнения лезвия рабочего органа почвообрабатывающего орудия из высокопрочного чугуна, включающий нагрев поверхности тыльной стороны лезвия почвообрабатывающих орудий электрической дугой обратной полярности и перемещение электрода, которое осуществляют по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия почвообрабатывающего орудия и вращением вокруг вертикальной оси, при этом нагрев поверхности тыльной стороны лезвия осуществляют вольфрамовым электродом, подключенным к источнику постоянного тока, при этом линейное перемещение электрода вдоль лезвия за один оборот вокруг своей оси составляет 3 мм, частота вращения 25 мин-1, а траектория вращения вокруг своей оси является эллиптической, больший параметр которой соответствует ширине лезвия L, а меньший - составляет 0,37L (Патент на изобретение РФ №2711391, опубл. 17.01.2020).

Известен способ обработки поверхности рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, включающий лазерное воздействие на поверхность инструмента, формирование пятна лазерного луча с заданной мощностью пучка на образце, при этом осуществляют обработку поверхности режущих частей и лезвий рабочих органов из высокопрочного чугуна ВЧ 50 многоканальным СО2-лазером с непрерывным режимом работы, при этом формируют пятно лазерного луча мощностью Р=2,0 кВт на образце, затем проводят обработку с диаметром пятна излучения в зоне обработки, равным d=9 мм, со скоростью перемещения лазера υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3 (Патент на изобретение РФ №2711389, опубл. 17.01.2020).

Известен способ получения отливки рабочего органа почвообрабатывающей машины, включающий изготовление песчано-глинистой формы, установку в форму холодильников, заливку чугуна в форму и последующее охлаждение кристаллизующегося металла, при этом устанавливают стальные холодильники объемом 3⋅10-8 на квадратный миллиметр отбеливаемой поверхности в клинообразной режущей части отливки, толщина сечения которой возрастает от 2-3 до 25-35 мм, и используют чугун с содержанием углерода 3,3-3,6%, кремния 1,21-1,53%, марганца 0,4-0,7%, магния 0,4-0,6% и серы ≤0,02%, который заливают в сырую песчано-глинистую форму при температуре 1360…1430°С (Патент на изобретение РФ №2649190, опубл. 30.03.2018).

Известен способ упрочнения лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, включающий нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности с использованием электрода путем его перемещения по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия и вращением вокруг вертикальной оси, при этом нагрев поверхности тыльной стороны лезвия осуществляют вольфрамовым электродом постоянным током, при этом диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, причем за один оборот электрода вокруг вертикальной оси линейное перемещение составляет 3 мм, а частоту вращения со определяют по зависимости ω=k⋅30 мин-1, где k=1,5 при толщине лезвия 2,0≤δ≤3,0 мм, k=1,0 при толщине лезвия 3,1≤δ≤5,0 мм, k=0,8 при толщине лезвия 5,1≤δ≤7,0 мм (Патент на изобретение РФ №2679673, опубл. 12.02.2019).

Известен способ лазерного термоупрочнения, включающий лазерное воздействие на поверхность инструмента, при этом формируют пятно лазерного луча с определенной мощностью пучка, при этом обрабатывают поверхность режущих частей и лезвий рабочих органов инструмента из высокопрочного чугуна ВЧ50 многоканальным СО2-лазером с непрерывным режимом работы, формируют пятно лазерного луча с мощностью пучка Р=1,8 кВт, при этом диаметр пятна лазерного луча в зоне обработки формируют равным d=9 мм, обрабатывают со скоростью перемещения υ=450 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3 (Патент на изобретение РФ №2700903, опубл. 23.09.2019).

Известен способ термообработки режущего инструмента из высокопрочного чугуна для разработки грунтов, включающий лазерное воздействие на поверхность инструмента, при этом формируют пятно лазерного луча с определенной мощностью пучка, при этом обрабатывают поверхность режущих частей и лезвий рабочих органов режущего инструмента из высокопрочного чугуна ВЧ50 многоканальным СО2-лазером с непрерывным режимом работы, формируют пятно лазерного луча с мощностью пучка Р=2,1 кВт, при этом диаметр пятна лазерного луча в зоне обработки формируют равным d=9 мм, обрабатывают со скоростью перемещения υ=480 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3 (Патент на изобретение РФ №2700900, опубл. 23.09.2019).

К недостаткам данных способов можно отнести то, что термообработку проводят только для чугуна, применяется технологический процесс с высокой трудоемкостью.

Известен способ термоупрочнения лезвия почвообрабатывающего орудия из высокопрочного чугуна ВЧ70, включающий нагрев поверхности тыльной стороны лезвия почвообрабатывающего орудия электрической дугой обратной полярности с использованием электрода, перемещение указанного электрода по криволинейной траектории, образованной линейным перемещением электрода параллельно острой кромке лезвия почвообрабатывающего орудия и вращением электрода вокруг вертикальной оси, при этом упомянутый нагрев поверхности тыльной стороны лезвия осуществляют вольфрамовым электродом, подключенным к источнику постоянного тока, а вращение электрода вокруг вертикальной оси осуществляют по криволинейной траектории с диаметром, равным ширине лезвия, при этом за один оборот электрода вокруг своей оси его линейное перемещение составляет 3 мм при толщине лезвия, равной не менее 6 мм, и частоте вращения электрода ω вокруг своей оси, определяемой зависимостью ω=23k мин-1, при этом k=1,5 при ширине лезвия 2,0≤δ≤4,0 см, или k=1,0 при ширине лезвия 4,1≤δ≤6,0 см, или k=0,8 при ширине лезвия 6,1≤δ≤8,0 см (Патент на изобретение РФ №2693668, опубл. 03.07.2019).

К недостаткам данного способа можно отнести упрочнение ограниченного размерного ряда рабочих органов по ширине лезвия.

Известен способ восстановления долот лемехов плугов, который включает удаление изношенной режуще-лезвийной части долота, изготовление компенсирующего элемента из листовой рессорно-пружинной стали и его приваривание к восстанавливаемому долоту, в качестве износостойкого материала используют пасту на основе никеля, наносимую на тыльную сторону компенсирующего элемента, а после затвердевания пасты проводят наплавку электрической дугой прямой полярности с использованием вибрирующего угольного электрода (Патент на изобретение РФ №2575531, опубл. 20.02.16).

Недостатком данного способа является недостаточная прочность наплавленного слоя из-за возникновения пор, появление которых неизбежно при вибродуговой наплавке.

Известен способ восстановления с упрочнением долот глубокорыхлителей, включающий удаление изношенной режуще-лезвийной части долота, изготовление накладной пластины из листовой рессорно-пружинной стали и ее приваривание к восстанавливаемому долоту, упрочнение поверхности накладной пластины путем наплавки износостойкого материала, при этом упрочнение на всей площади поверхности накладной пластины проводят плазменной наплавкой на обратной полярности при силе тока 180-230 А и подаче порошка 50 г/мин, а в качестве износостойкого материала используют порошок с содержанием 55-60% карбида вольфрама с размером частиц 20 мкм (Патент на изобретение РФ №2680332, опубл. 19.02.2019).

К недостаткам данного способа можно отнести получение внутренних напряжений упрочненного слоя из-за особенности технологического процесса.

Известен способ упрочнения режущей части рабочих органов, включающий использование плазмы дугового разряда обратной полярности между электродом и упрочняемой поверхностью с перемещением электрода вдоль упрочняемой поверхности пульсирующей дугой, при этом упрочняют режущую часть рабочих органов, выполненных из высокопрочного чугуна ВЧ 50, в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 4-8 Гц и перемещается по упрочняемой поверхности со скоростью 0,4-1,5 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,06-0,07 с (Патент на изобретение РФ №2717443, опубл. 23.03.2020).

К недостаткам данного способа можно отнести то, что термообработку проводят только для чугуна ВЧ50, применяется технологический процесс с высокой трудоемкостью.

Известен способ электроконтактного термоупрочнения режущей части рабочих органов, включающий использование плазмы дугового разряда обратной полярности между электродами упрочняемой поверхностью с перемещением электрода вдоль упрочняемой поверхности пульсирующей дугой, при этом упрочняют режущую часть рабочих органов, выполненных из высокопрочного чугуна ВЧ50, а в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 3-6 Гц и который перемещают по упрочняемой поверхности со скоростью 0,3-1,0 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,15 с (Патент на изобретение РФ №2718522, опубл. 08.04.2020).

К недостаткам данного способа можно отнести то, что термообработку проводят только для чугуна ВЧ50, применяется технологический процесс с высокой трудоемкостью.

Известен способ упрочнения режущей части рабочих органов орудий для разработки почвогрунтов, включающий упрочнение пульсирующей дугой с использованием плазмы дугового разряда обратной полярности между электродами упрочняемой поверхностью и с перемещением электрода вдоль упрочняемой поверхности, при этом упрочняют режущую часть рабочих органов, выполненных из высокопрочного чугуна ВЧ 60, содержащего вес. %: С 3,5, Si 2,8, Mn 0.5, Ni 0,4, S 0,015, Р 0,05, Cr 0,15, Cu 0,3, Fe - остальное, при этом в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 3-5 Гц, при этом электрод перемещают по упрочняемой поверхности со скоростью 0,4-1,5 см/с, а время каждого контакта вольфрамового электрода с упрочняемой поверхностью устанавливают 0,1-0,13 с (Патент на изобретение РФ №2722959, опубл. 05.06.2020).

К недостаткам данного способа можно отнести то, что термообработку проводят только для чугуна ВЧ60, применяется технологический процесс с высокой трудоемкостью.

Известен способ термоупрочнения режущей части рабочих органов, включающий использование плазмы дугового разряда обратной полярности между электродом и упрочняемой поверхностью с перемещением электрода вдоль упрочняемой поверхности пульсирующей дугой, при этом упрочняют режущую часть рабочих органов, выполненных из высокопрочного чугуна ВЧ 50, а в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 4-8 Гц и который перемещают по упрочняемой поверхности со скоростью 0,3-1,0 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,1 с (Патент на изобретение РФ №2722958, опубл. 05.06.2020).

К недостаткам данного способа можно отнести его узконаправленность и высокую трудоемкостью технологического процесса.

Известен способ упрочнения лезвий рабочих органов орудий для разработки почвогрунтов, включающий использование плазмы дугового разряда обратной полярности между электродами упрочняемой поверхностью с перемещением электрода вдоль упрочняемой поверхности, при этом упрочнение осуществляют пульсирующей дугой, при этом осуществляют упрочнение режущей части лезвий рабочих органов, выполненных из высокопрочного чугуна ВЧ 60 следующего состава, мас. %: С - 3,4, Si - 2,7, Mn - 0,7, Ni - 0,2, S - 0,015, Р - 0,05, Cr - 0,1, Cu - 0,2, Fe - остальное, с использованием вольфрамового электрода, при этом осуществляют осевые продольные колебания электрода с частотой 3-5 Гц и его перемещение по упрочняемой поверхности со скоростью 0,4-1,5 см/с, причем время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,08-0,09 с (Патент на изобретение РФ №2726051, опубл. 08.07.2020).

К недостаткам данного способа можно отнести его узконаправленность и высокую трудоемкостью технологического процесса.

Известен способ упрочнения режущей части рабочих органов, включающий использование плазмы дугового разряда обратной полярности между электродом и упрочняемой поверхностью с перемещением электрода вдоль упрочняемой поверхности пульсирующей дугой, при этом упрочняют режущую часть рабочих органов, выполненных из высокопрочного чугуна ВЧ 60 следующего состава, %: С - 3,3, Si - 2,6, Mn - 0,5, Ni - 0,3, S - 0,015, Р - 0,05, Cr - 0,1, Cu - 0,2, Fe остальное, в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 3-5 Гц и перемещается по упрочняемой поверхности со скоростью 0,4-1,5 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,06-0,07 с (Патент на изобретение РФ №2733879, опубл. 07.10.2020).

К недостаткам данного способа можно отнести его узконаправленность и высокую трудоемкостью технологического процесса.

Известен способ восстановления рабочих органов орудий для разделки почвогрунтов, включающий удаление изношенной режуще-лезвийной части рабочего органа в виде долота, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому долоту, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, при этом используют шарикоподшипниковую сталь ШХ4 полосового проката шириной 12 мм, толщиной 5 мм, нарезают прокат по размеру режущей части, приваривают параллельно режущей части, упрочнение проводят электродуговой наплавкой постоянным током обратной полярности под слоем флюса при силе тока 160-220 А, диаметре электродной проволоки 1,6-2 мм, напряжении 30-32 В, скорости наплавки 20-25 м/ч и скорости подачи электродной проволоки 95-110 м/ч, а в качестве износостойкого материала используют электродную проволоку состава, мас. %: С 2,0, Mn 0,9, Si 1,0, Al 0,6, Cr 9,2, Ni 5,2, Mo 1,0, Fe остальное, при этом толщина наплавленного слоя составляет 1,8-2,2 мм, а его твердость - 59-61 HRC (Патент на изобретение РФ №2737691, опубл. 02.12.2020).

К недостаткам данного способа можно отнести получение внутренних напряжений упрочненного слоя из-за особенности технологического процесса.

Известен способ восстановления с упрочнением долот глубокорыхлителей почвообрабатывающих машин, включающий удаление изношенной режуще-лезвийной части долота, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому долоту, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, при этом используют шарикоподшипниковую сталь ШХ4 полосового проката шириной 10 мм, толщиной 4 мм, нарезают прокат по размеру режущей части, приваривают параллельно режущей части, упрочнение проводят электродуговой наплавкой постоянным током обратной полярности под слоем флюса при силе тока 160-220 А, диаметре электродной проволоки 1,6-2 мм, напряжении 30-32 В, скорости наплавки 20-25 м/ч и скорости подачи электродной проволоки 100-125 м/ч, а в качестве износостойкого материала используют электродную проволоку состава, мас. %: С 2,0, Mn 0,9, Si 1,0, Al 0,6, Cr 9,2, Мо 0,5, Fe остальное, при этом толщина наплавленного слоя составляет 1,2-1,6 мм, а его твердость - 59-61 HRC (Патент на изобретение РФ №2739075, опубл. 21.12.2020).

К недостаткам данного способа можно отнести получение внутренних напряжений упрочненного слоя из-за особенности технологического процесса.

Известен способ восстановления рабочего органа глубокорыхлителя почвообрабатывающих машин, включающий удаление изношенной режуще-лезвийной части рабочего органа в виде долота, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому долоту, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, при этом используют шарикоподшипниковую сталь ШХ4 полосового проката шириной 10 мм, толщиной 4,5 мм, нарезают прокат по размеру режущей части, приваривают параллельно режущей части, упрочнение проводят электродуговой наплавкой постоянным током обратной полярности под слоем флюса при силе тока 160-220 А, диаметре электродной проволоки 1,6-2 мм, напряжении 30-32 В, скорости наплавки 20-25 м/ч и скорости подачи электродной проволоки 100-125 м/ч, а в качестве износостойкого материала используют электродную проволоку состава, мас. %: С 2,0, Mn 0,9, Si 1,0, Al 0,6, Cr 9,2, Ni 4,3, Mo 0,5, Fe - остальное, при этом толщина наплавленного слоя составляет 1,5-2,0 мм, а его твердость - 59-61 HRC (Патент на изобретение РФ №2739052, опубл. 21.12.2020).

К недостаткам данного способа можно отнести получение внутренних напряжений упрочненного слоя из-за особенности технологического процесса.

Известен способ восстановления рабочего органа почвообрабатывающих машин, включающий удаление изношенной режуще-лезвийной части рабочего органа в виде долота, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому долоту, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, при этом используют шарикоподшипниковую сталь ШХ4 полосового проката шириной 15 мм, толщиной 5,0 мм, нарезают прокат по размеру режущей части, приваривают параллельно режущей части, упрочнение проводят электродуговой наплавкой постоянным током обратной полярности под слоем флюса при силе тока 160-220 А, диаметре электродной проволоки 2,2-2,4 мм, напряжении 30-32 В, скорости наплавки 20-25 м/ч и скорости подачи электродной проволоки 120-135 м/ч, а в качестве износостойкого материала используют электродную проволоку состава, мас. %: С 2,0, Mn 0,9, Si 1,0, Al 0,6, Cr 13,6, Ni 6,7, Mo 2,0, Fe - остальное, при этом толщина наплавленного слоя составляет 2,5-3,0 мм, а его твердость - 60-61 HRC (Патент на изобретение РФ №2739045, опубл. 21.12.2020).

К недостаткам данного способа можно отнести получение внутренних напряжений упрочненного слоя из-за особенности технологического процесса.

Известен способ упрочнения лезвий рабочих органов, включающий использование плазмы дугового разряда обратной полярности между электродами упрочняемой поверхностью лезвия с перемещением электрода вдоль упрочняемой поверхности пульсирующей дугой, при этом упрочняют лезвия рабочих органов, выполненных из высокопрочного чугуна ВЧ 50, а в качестве электрода используют вольфрамовый электрод, который осуществляет осевые продольные колебания с частотой 4-8 Гц и который перемещают по упрочняемой поверхности со скоростью 0,4-1,5 см/с, при этом время каждого контакта вольфрамового электрода с упрочняемой поверхностью составляет 0,08 с (Патент на изобретение РФ №2718521, опубл. 08.04.2020).

К недостаткам данного способа можно отнести получение внутренних напряжений упрочненного слоя из-за особенности технологического процесса.

Наиболее близким техническим решением, выбранным в качестве прототипа является способ восстановления рабочих органов почвообрабатывающих машин, включающий удаление изношенной режуще-лезвийной части рабочего органа в виде долота, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому долоту, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, при этом используют шарикоподшипниковую сталь ШХ4 полосового проката шириной 14 мм, толщиной 5,5 мм, нарезают прокат по размеру режущей части, приваривают параллельно режущей части, упрочнение проводят электродуговой наплавкой постоянным током обратной полярности под слоем флюса при силе тока 160-220 А, диаметре электродной проволоки 2-2,2 мм, напряжении 30-32 В, скорости наплавки 20-25 м/ч и скорости подачи электродной проволоки 90-105 м/ч, а в качестве износостойкого материала используют электродную проволоку состава, мас. %: С 2,0, Mn 0,9, Si 1,0, Al 0,6, Cr 11,0, Ni 5,7, Mo 1,0, Fe - остальное, при этом толщина наплавленного слоя составляет 2,2-2,5 мм, а его твердость 59-61 HRC (Патент на изобретение РФ №2739049, опубл. 21.12.2020).

Задачей изобретения является повышение долговечности восстановленных и упрочненных рабочих органов для почвообработки.

Техническим результатом изобретения является повышение износостойкости восстановленных рабочих органов при работе в условиях каштановых почв Волгоградской области с высокими показателями интенсивного абразивного изнашивания.

Технический результат достигается способом восстановления изношенных режущих поверхностей рабочих органов почвообрабатывающих машин, включающим удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому рабочему органу, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, при этом используют заранее подготовленные по ширине и длине восстанавливаемой лезвийной части заготовки листового проката шарикоподшипниковой стали ШХ15СГ толщиной 2,7 мм, приваривают контактно-точеной сваркой с диаметром контактной поверхности электродов 5,7 мм, продолжительностью пропускания сварочного тока 1,6 с, давлении на электродах 115-125 кг, силой сварочного тока 4700-4800 А, упрочнение проводят газопламенным напылением, которое проводят в два этапа, сначала происходит напыление подслоя термореагирующим порошком толщиной 0,05-0,15 мм, а затем основного слоя износостойким порошковым сплавом толщиной 2,4 мм, при этом подслой и основной слой наносят при одних и тех же режимах напыления - давлении кислорода 0,35-0,45 МПа, давлении ацетилена 0,03-0,05 МПа, расходом кислорода 960-1100 л/ч, расходом ацетилена 900-1000 л/ч, расстоянием от среза сопла мундштука до наплавляемой поверхности 160-200 мм, расходом порошка 2,5-3 кг/ч, при этом перед началом напыления деталь подогревают до температуры 50-100°С, в качестве износостойкого материала используют порошок состава, мас. %: С - 2,5, Cr - 25, Ni - 4,0, Si - 2,2, Mn - 1,3, Мо - 4,0, Al - 0,7, Fe - остальное, при этом твердость упрочненного слоя - 58-60 HRC.

Пример конкретного выполнения.

Рабочие органы работали в условиях каштановых почв Волгоградской области. Из-за высоких показателей интенсивности абразивного изнашивания данных почв, особенно при влажности почв около 12%, рабочие органы почвообрабатывающих орудий имеют низкую наработку на отказ. Разработан способ восстановления работоспособности изношенных рабочих органов.

Вначале удаляется изношенная режуще-лезвийная часть рабочего органа почвообрабатывающего орудия. Для этого используются угловые шлифовальные машины.

Далее из шарикоподшипниковой стали ШХ15СГ полосового проката заранее подготовленные по ширине и длине восстанавливаемой лезвийной части заготовки толщиной 2,7 мм приваривают контактно-точеной сваркой к обработанной поверхности.

Диаметр контактной поверхности электродов 5,7 мм, продолжительность пропускания сварочного тока 1,6 с, давление на электродах 115-125 кг, сила сварочного тока 4700-4800 А. В результате получают накладную пластину (новая режуще-лезвийная часть рабочего органа).

Поверхность накладной пластины упрочняют газопламенным напылением, которое проводят в два этапа. Сначала напыляли подслой термореагирующего порошка толщиной 0,05-0,15 мм. Затем напыляли основной слой износостойким порошковым сплавом толщиной 2,4 мм, при этом подслой и основной слой наносят при одних и тех же режимах напыления - давлении кислорода 0,35-0,45 МПа, давлении ацетилена 0,03-0,05 МПа, расходом кислорода 960-1100 л/ч, расходом ацетилена 900-1000 л/ч, расстоянием от среза сопла мундштука до наплавляемой поверхности 160-200 мм, расходом порошка 2,5-3 кг/ч, при этом перед началом напыления деталь подогревали до температуры 50-100°С.

В качестве износостойкого материала использовали порошок состава, мас. %: С - 2,5, Cr - 25, Ni - 4,0, Si - 2,2, Mn - 1,3, Мо - 4,0, Al - 0,7, Fe - остальное, при этом твердость упрочненного слоя - 58-60 HRC. Благодаря наплавленному слою, полученному на восстановленных и упрочненных рабочих органах, повышалась износостойкость в условиях интенсивного абразивного изнашивания.

В результате износостойкость восстановленных и упрочненных рабочих органов при обработке почв увеличивается в среднем в 3,1-4,0 раза.

Таким образом, заявленный способ восстановления изношенных режущих поверхностей рабочих органов почвообрабатывающих машин повышает износостойкость восстановленных рабочих органов при работе в условиях каштановых почв Волгоградской области с высокими показателями интенсивного абразивного изнашивания.

Способ восстановления изношенных режущих поверхностей рабочих органов почвообрабатывающих машин, включающий удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины из стали полосового проката и ее приваривание к восстанавливаемому рабочему органу, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины, отличающийся тем, что используют заранее подготовленные по ширине и длине восстанавливаемой режуще-лезвийной части заготовки листового проката шарикоподшипниковой стали ШХ15СГ толщиной 2,7 мм, приваривают контактно-точечной сваркой с диаметром контактной поверхности электродов 5,7 мм, продолжительностью пропускания сварочного тока 1,6 с, при давлении на электродах 115-125 кг, силой сварочного тока 4700-4800 А, упрочнение проводят газопламенным напылением, которое проводят в два этапа, сначала происходит напыление подслоя термореагирующим порошком толщиной 0,05-0,15 мм, а затем основного слоя износостойким порошковым сплавом толщиной 2,4 мм, при этом подслой и основной слой наносят при одних и тех же режимах напыления - давлении кислорода 0,35-0,45 МПа, давлении ацетилена 0,03-0,05 МПа, расходом кислорода 960-1100 л/ч, расходом ацетилена 900-1000 л/ч, расстоянием от среза сопла мундштука до наплавляемой поверхности 160-200 мм, расходом порошка 2,5-3 кг/ч, при этом перед началом напыления деталь подогревают до температуры 50-100°С, в качестве износостойкого материала используют порошок состава, мас.%: С - 2,5, Cr - 25, Ni - 4,0, Si - 2,2, Mn - 1,3, Мо - 4,0, Al - 0,7, Fe - остальное, при этом твердость упрочненного слоя 58-60 HRC.



 

Похожие патенты:
Изобретение относится к восстановлению изношенных деталей газопламенным напылением и может быть использовано при восстановлении рабочих органов почвообрабатывающих машин. Способ включает удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины из заранее подготовленной по ширине и длине восстанавливаемой лезвийной части заготовки листового проката шарикоподшипниковой стали ШХ15СГ толщиной 2,5 мм и ее приваривание к восстанавливаемому рабочему органу контактно-точечной сваркой.
Изобретение относится к восстановлению изношенных деталей и может быть использовано при восстановлении долот чизельных плугов. Способ включает удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины в виде заранее подготовленной по ширине и длине восстанавливаемой лезвийной части заготовки листового проката шарикоподшипниковой стали IIIХ15СГ толщиной 2,9 мм и ее приваривание к восстанавливаемому рабочему органу контактно-точечной сваркой.
Изобретение относится к технологии плазменного нанесения защитных покрытий и может быть использовано для защиты стальных конструкций, эксплуатируемых в условиях Арктики и Крайнего Севера. Способ нанесения защитного покрытия на стальные изделия, эксплуатируемые в условиях Арктики и Крайнего Севера, включает нанесение на стальную основу суспензии состава K0.06TiO2+H2O+Na2SiO3 с размером частиц от 10 до 150 нм плазменным напылением в диапазоне температур 2000-2200°С, причем создают защитное покрытие толщиной 50-100 мкм.

Настоящее изобретение относится к области защитных покрытий для теплоизоляции деталей авиационных или наземных газотурбинных двигателей, работающих в условиях высоких температур. Предложенная деталь (20) с покрытием для газотурбинного двигателя содержит подложку (21) и, по меньшей мере, один защитный от алюмосиликатов кальция и магния (CMAS) слой (22) на подложке (21).

Изобретение относится к устройству для нанесения функциональных покрытий на поверхности деталей различной конфигурации. Плазмотрон установлен с возможностью вращения в двух перпендикулярных проекциях двухкоординатных плоскостей по заданной программе.
Изобретение относится к восстановлению изношенных деталей и может быть использовано при восстановлении рабочих органов почвообрабатывающих машин. Способ включает удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины из стали полосового проката ШХ15СГ толщиной 2,4 мм и ее приваривание контактно-точечной сваркой к восстанавливаемому рабочему органу, упрочнение поверхности накладной пластины путем наплавки износостойкого материала по всей площади поверхности накладной пластины.

Изобретение относится к анти-CMAS покрытиям и может быть использовано в газовых турбинах или двигательных системах, применяющихся в авиационной, космической, судостроительной и других отраслях промышленности для защиты деталей, подвергающихся действию высоких температур. Способ покрытия по меньшей мере одной поверхности твердой основы слоем, содержащим по меньшей мере одно керамическое соединение, методом суспензионного плазменного напыления включает впрыскивание по меньшей мере одной суспензии по меньшей мере одного керамического соединения в плазменную струю и ее распыление на поверхность основы с образованием слоя, содержащего по меньшей мере одно керамическое соединение, при этом в суспензии по меньшей мере 90 об.% твердых частиц имеет диаметр меньше 15 мкм и по меньшей мере 50 об.% твердых частиц имеет диаметр больше или равный 1 мкм.

Изобретение относится к области металловедения, химико-термической обработке металлических изделий, к созданию материалов конструкционного назначения, к проблеме трения и износа и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности. Способ получения многослойного высокоэнтропийного композитного покрытия из порошковых материалов на стальной основе включает химическое травление, пескоструйную обработку стальной основы и нанесение высокоскоростным газопламенным напылением слоев высокоэнтропийного газопламенного покрытия.

Изобретение относится к износостойким сплавам на основе железа для упрочнения поверхности стальных изделий, которые могут быть использованы для бурения при добыче нефти и газа, горных работах, производстве цемента и т.д. Износостойкий сплав на основе железа для поверхностного упрочнения стальной подложки включает, мас.%: бор 1,6-2,4, углерод 1,7-3,0, молибден 16,0-19,5, никель 3,5-6,5, марганец менее 0,8, кремний 0,2-3,0, ванадий 10,8-13,2, остальное – железо.

Изобретение может быть использовано при производстве графитированных и активированных углеродных волокон и тканей, обладающих высокой теплостойкостью и электропроводностью. Теплозащитное электропроводящее покрытие на углеродные волокна и ткани наносят путём плазменного напыления керметной композиции из механической порошковой смеси, содержащей следующие компоненты, мас.%: нихром 5-15, диоксид циркония, стабилизированный оксидом иттрия, 15-5, алюминий 50, никельалюминий 10, аморфный магнитомягкий сплав (Co-Fe-Ni-Cu-Nb-Si-B) - 20.
Изобретение относится к восстановлению изношенных деталей газопламенным напылением и может быть использовано при восстановлении рабочих органов почвообрабатывающих машин. Способ включает удаление изношенной режуще-лезвийной части рабочего органа, изготовление накладной пластины из заранее подготовленной по ширине и длине восстанавливаемой лезвийной части заготовки листового проката шарикоподшипниковой стали ШХ15СГ толщиной 2,5 мм и ее приваривание к восстанавливаемому рабочему органу контактно-точечной сваркой.
Наверх