Способ обработки отработанного раствора блестящего травления меди

Изобретение относится к области гальванотехники, в частности к обработке отработанного травильного раствора, и может быть использовано в процессе изготовления деталей из меди. Предложен способ обработки отработанного раствора блестящего травления меди, содержащего 900-920 г/л серной кислоты, 410-430 г/л азотной кислоты, 5-10 г/л хлорида натрия и соли меди в растворенном и твердом состоянии. В отработанный раствор добавляют воду до полного растворения осадка солей меди и к полученному раствору добавляют гидроксид или карбонат натрия до рН 0,5-1,0. Затем осуществляют электрохимическую обработку полученного раствора в катодной камере двухкамерного электролизера с катионнообменной мембраной, с катодом из титана или нержавеющей стали и анодом из платинированного титана или платинированного ниобия, находящемся в растворе 15-30 г/л серной кислоты, при этом обработку ведут при потенциале катода от -0,1 до -0,5 В до полного обесцвечивания раствора. Обеспечивается полное извлечение всей меди, содержащейся в обрабатываемом отработанном травильном растворе с осадком. 3 пр.

 

Изобретение относится к области гальванотехники, в частности, к способу обработки отработанного раствора блестящего травления меди и может быть использовано для обработки поверхности медных деталей и при изготовлении деталей из меди.

В процессе эксплуатации этого раствора образуется осадок медных солей и травильный раствор приходится заменять свежим, предварительно растворив водой осадок медных солей на дне и боковых стенках ванны с травильным раствором. Полученный раствор представляет собой высокотоксичный жидкий отход, а после его обработки щелочными реагентами образуется высокотоксичный шлам, состоящий из соединений меди.

Известен способ регенерации щелочного медно-аммиачного раствора травления меди, используемого в производстве печатных плат [Пат. РФ 2620228, от 23.05.2017]. Он не требует расхода химикатов и не создает токсичных отходов, однако его невозможно использовать для регенерации или утилизации раствора блестящего травления вышеуказанного состава.

Для растворов блестящего травления меди на основе смеси

концентрированных кислот отсутствуют известные способы, позволяющие регенерировать или утилизировать отработанные растворы без одновременного образования высокотоксичных жидких или твердых отходов.

Наиболее близким по технической сущности и достигаемому результату является способ электрохимической обработки (регенерации) медно-хлоридного травильного раствора [пат. РФ 2677583 от 17.01.2017]. Согласно этому способу отработанный травильный раствор, содержащий ионы одно- и двухвалентной меди, подвергают электрохимической обработке в катодной камере, отделенной катионообменной мембраной от анодной камеры, содержащей раствор серной кислоты и платинированный титановый анод, подключенный к источнику тока, при этом после обработки травильный раствор поступает в дополнительную анодную камеру с платинированным титановым анодом, отделенную от катодной камеры катионообменной мембраной и подключенную к дополнительному источнику тока, причем травильный раствор с начальной концентрацией ионов меди 70-200 г/л и хлористого водорода 75-90 г/л обрабатывают в катодной камере про катодной плотности тока 2-10 А/дм2, в основной анодной камере при анодной плотности тока 1-5 А/дм2 и в дополнительной анодной камере при анодной плотности тока 0,1-0,5 А/дм2.

Этот процесс характеризуется низкими энергозатратами и отсутствием медь-содержащих отходов. Однако при проведении электролиза выделяется газообразный хлор и поэтому вся установка должна быть надежно герметизирована и снабжена системой утилизации хлора.

Извлечь медь аналогичным методом непосредственно из раствора блестящего травления меди не удается.

Задачей данного изобретения является разработка такого способа электрохимической обработки, который позволит осуществить полное извлечения всей меди, содержащейся в растворе травления и в осадке.

Эта задача решается способом обработки отработанного раствора блестящего травления меди, включающим электрохимическую обработку в катодной камере двухкамерного электролизера с катионнообменной мембраной, с катодом из титана или нержавеющей стали и анодом из платинированного титана или платинированного ниобия, находящемся в растворе серной кислоты с концентрацией 15-30 г/л, при этом для электрохимической обработки используют раствор, который получают, смешивая травильный раствор, содержащий 900-920 г/л серной кислоты, 410-430 г/л азотной кислоты и 5-10 г/л хлорида натрия, а также соли меди, с раствором, полученным растворением в воде осадка солей, образовавшегося в ванне блестящего травления, после чего к раствору добавляют гидроксид или карбонат натрия для повышения рН до 0,5-1,0, затем проводят обработку при потенциале катода от -0,1 до -0,5 В до полного обесцвечивания раствора.

Таким образом, при реализации данного способа полностью исключена возможность образования твердых или жидких отходов, содержащих соединения меди. Конечными продуктами процесса являются чистая металлическая медь и жидкий отход - раствор натриевых солей серной, азотной и хлористоводородной кислот.

Преимуществами предлагаемого способа являются:

1) 100%-ная рекуперация меди, стравленной с поверхности обрабатываемых деталей.

2) Низкие энергозатраты благодаря высокой электропроводности растворов, обрабатываемых с помощью электролиза.

3) Отсутствие токсичных отходов и возможность использования образующихся отходов в качестве удобрения. При получении удобрения вместо гидроксида или карбоната натрия используют соответствующие соединения калия или гидроксид кальция.

Приведенные примеры иллюстрируют реализацию способа.

ПРИМЕР 1.

Отработанный травильный раствор, насыщенный в отношении солей меди, содержит серную кислоту 900 г/л, азотную кислоту 410 г/л, хлорид натрия 5 г/л и осадок солей меди. Этот отработанный раствор с осадком добавили в воду небольшими порциями с одновременным охлаждением до полного растворения осадка. К полученному раствору добавили раствор, содержащий 100 г/л гидроксида натрия, до рН 0,5, затем раствор поместили в катодную камеру двухкамерного электролизера с катионообменной мембраной, катодом из нержавеющей стали и анодом из платинированного ниобия, находящимся в анодной камере, содержащей раствор серной кислоты 15 г/л, и провели электролиз при величине катодного потенциала - 0,1 В до обесцвечивания раствора.

ПРИМЕР 2

Отработанный травильный раствор, насыщенный в отношении солей меди, содержит серную кислоту 920 г/л, азотную кислоту 430 г/л, хлорид натрия 10 г/л и осадок солей меди. Этот отработанный раствор с осадком добавили в воду небольшими порциями до полного растворения осадка. К полученному раствору добавили раствор, содержащий 100 г/л карбоната натрия, до рН 1,0, затем раствор поместили в катодную камеру двухкамерного электролизера с катионообменной мембраной, катодом из титана и анодом из платинированного титана и провели электролиз в потенциостатическом режиме при величине катодного потенциала -0,5 В до обесцвечивания раствора. Анодная камера содержала раствор серной кислоты с начальной концентрацией 30 г/л.

ПРИМЕР 3

Отработанный травильный раствор, насыщенный в отношении солей меди, содержит серную кислоту 900 г/л, азотную кислоту 415 г/л, хлорид натрия 7 г/л и осадок солей меди. Этот отработанный раствор с осадком добавили в воду небольшими порциями до полного растворения осадка. К полученному раствору добавили раствор гидроксида натрия до рН 0,3, затем раствор поместили в катодную камеру двухкамерного электролизера с катионообменной мембраной, катодом из нержавеющей стали и анодом из платинированного титана, находящимся в анодной камере, содержащей раствор серной кислоты 20 г/л, и провели электролиз при величине катодного потенциала -0,2 В до обесцвечивания раствора.

Способ обработки отработанного раствора блестящего травления меди, содержащего 900-920 г/л серной кислоты, 410-430 г/л азотной кислоты, 5-10 г/л хлорида натрия и соли меди в растворенном и твердом состоянии, характеризующийся тем, что в отработанный раствор добавляют воду до полного растворения осадка солей меди и к полученному раствору добавляют гидроксид или карбонат натрия до рН 0,5-1,0, а затем осуществляют электрохимическую обработку полученного раствора в катодной камере двухкамерного электролизера с катионнообменной мембраной, с катодом из титана или нержавеющей стали и анодом из платинированного титана или платинированного ниобия, находящемся в растворе 15-30 г/л серной кислоты, при этом обработку ведут при потенциале катода от -0,1 до -0,5 В до полного обесцвечивания раствора.



 

Похожие патенты:

Изобретение относится к травлению листовой стали. Способ включает травление листовой стали 8 при постоянном ее погружении в травильную ванну 1, содержащую травильный раствор 10.
Изобретение относится к черной металлургии и химической промышленности, в частности к процессам травления углеродистых и специальных сталей оборотной соляной кислотой, и может быть использовано для регенерации отработанных травильных растворов с попутным получением порошка чистого оксида железа. Переработка отработанных солянокислых растворов травления, содержащих хлориды железа (II) и/или хлориды железа (III), включает стадию гидролиза раствора и стадию извлечения твердого оксида железа с конденсацией хлористого водорода.

Изобретение относится к утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств. В способе отработанный сернокислый раствор травления металлов нейтрализуют с помощью отсева электросталеплавильного шлака при следующем соотношении, мас.%: отработанный сернокислый раствор травления металлов 74-76, отсев электросталеплавильного шлака 24-26.

Изобретение относится к утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств. В способе в реактор с отработанным сернокислым раствором вначале добавляют шлам хлорида кальция и после достижения рН, равного 5,0-5,5, в реактор подают пыль-уноса известняка до рН, равного 7,0-8,0, после окончания реакций полученную суспензию передают в вакуум-кристаллизатор для образования кристаллогидратов сульфата кальция и хлорида кальция.
Изобретение относится к электрохимии. Для электрохимической регенерации методом мембранного электролиза солянокислого медно-хлоридного или солянокислого медно-аммонийно-хлоридного раствора травления меди в катодном пространстве, отделенном катионообменной мембраной, мембранного электролизера, где находится раствор травления меди, проводят катодный процесс электрохимического восстановления ионов меди до металлической меди.

Изобретение может быть использовано при водоочистке. Способ получения железосодержащего коагулянта включает окисление железа (II) в железо (III) путем окисления отработанных травильных растворов.

Изобретение относится к способу регенерации медно-аммиачно-хлоридного или медно-аммиачно-сульфатного раствора травления меди с помощью гидразина или водного раствора гидразина с концентрацией 1-99 мас.%. Одна заранее рассчитанная часть общего объема отработанного раствора травления меди, подлежащего регенерации, смешивается с раствором гидразина для восстановления ионов одно- и двухвалентной меди до металлической меди, осадок которой отделяется декантацией или фильтрованием.
Изобретение относится к регенерации травильного раствора хлорида меди и может быть использовано в производстве печатных плат. Способ регенерации медно-хлоридного травильного раствора, содержащего 70-200 г/л ионов меди и 75-90 г/л хлористого водорода, включает электрохимическую обработку медно-хлоридного травильного раствора при температуре 25-50°С на титановом катоде в катодной камере, отделенной катионообменной мембраной от анодной камеры с раствором серной кислоты и платинированным титановым анодом, подключенным к источнику тока.

Изобретение относится к утилизации отработанных медно-аммиачных растворов травления печатных плат. Способ включает обработку отработанного концентрированного медно-аммиачного раствора раствором соляной или серной кислоты до рН 5,5-6,5 для отделения ионов меди в виде осадка гидроксида меди.
Изобретение относится к гальванотехнике. Способ включает электрохимическую обработку регенерируемого медно-аммиачного травильного раствора в трехкамерном электролизере с двумя катодными камерами и двумя катионообменными мембранами, причем сначала регенерируемый раствор подвергают электрохимической обработке в первой катодной камере при плотности тока 4–6 А/дм2, затем во второй катодной камере при плотности тока 2–3 А/дм2, а после – в анодной камере при плотности тока 0,5–1,0 А/дм2.

Изобретение относится к утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств. В способе отработанный сернокислый раствор травления металлов нейтрализуют с помощью отсева электросталеплавильного шлака при следующем соотношении, мас.%: отработанный сернокислый раствор травления металлов 74-76, отсев электросталеплавильного шлака 24-26.
Наверх