Арматура из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности и способ ее получения

Изобретение относится к арматуре из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности и способу ее получения, которые относятся к области технологий строительных материалов. Арматура из композиционного материала из углеродного волокна содержит углеродные волокна и матрицу на основе эпоксидной смолы; поверхность указанной арматуры содержит непрерывное спиральное ребро из эпоксидной смолы, при этом толщина ребра из смолы находится в пределах от 0,2 до 0,4 мм, ширина ребра из смолы находится в пределах от 5 до 7 мм, а шаг спирали ребра из смолы находится в пределах от 2 до 4 мм. Благодаря тому что в процессе формирования при обвязывании нейлоновой лентой в отношении пучков углеродных волокон не происходит сдавливания и за счет наличия натяжения пучков углеродных волокон ориентация пучков углеродных волокон в направлении длины арматуры остается прямой, поэтому арматура, полученная с применением способа согласно настоящему изобретению, характеризуется высокой прочностью и высоким модулем. 2 н. и 1 з.п. ф-лы, 2 ил.

 

Область техники

Настоящее изобретение относится к области технологий строительных материалов и в целом относится к арматуре из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности, а также к способу получения арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности.

Уровень техники

Арматура из композиционного материала из углеродного волокна характеризуется легким весом и высокой прочностью, коррозионной стойкостью, сопротивлением утомлению, способностью поглощать вибрации и другими замечательными свойствами; ее применяют в элементах троса мостовых тросов, и она стала направлением развития для улучшения мостов в отношении длины пролетов и долговечности. Тем не менее анкерное крепление с применением в целом гладкой круглой арматуры из композиционного материала из углеродного волокна является сравнительно трудным, что является ключевым фактором, ограничивающим сегодня ее широкое применение. Сегодня в Китае и за рубежом разработано три вида арматуры из композиционного материала из углеродного волокна с ребрами на поверхности, предназначенные для увеличения силы механического взаимодействия между поверхностью арматуры и материалом для анкерного крепления, чтобы повысить эффективность анкерного крепления с применением арматуры.

В первом способе сначала с помощью технологии формования с применением пултрузии получают гладкую круглую арматуру из композиционного материала из углеродного волокна; в эпоксидной смоле пропитывают пучки волокон, которыми обвязывают ее поверхность; эпоксидная смола отвердевает и пристает с образованием ребер. Прочность сцепления пучков волокон для обвязывания, с помощью которых в этом способе получают материал ребер, с гладкой круглой арматурой является низкой, поэтому легко происходит отделение, и не может в полной мере проявиться способность к растяжению арматуры из композиционного материала из углеродного волокна.

Во втором способе неотвердевшую предварительно формованную арматуру, пропитанную эпоксидной смолой, обвязывают лентой F4 и вводят в стандартный инструмент для формования вместе с ней для отверждения; после отверждения ленту F4 разматывают с получением на поверхности арматуры спиральной канавки. Этот способ характеризуется двумя проблемами: во-первых, поскольку обвязывают лентой F4, ориентация внутренних непрерывных пучков углеродных волокон в направлении длины арматуры меняется, что приводит к значительному снижению предела прочности на растяжение и модуля упругости арматуры; во-вторых, после обвязывания лентой F4 поверхность арматуры является неровной, и в процессе введения в стандартный инструмент для формования с целью отверждения сила трения очень большая, поэтому легко возникает проблема забивания формы. Проведенные испытания показали, что у арматуры, полученной этим способом, предел прочности на растяжение составляет приблизительно 2400 МПа, а модуль растяжения составляет приблизительно 150 ГПа.

В третьем способе путем обработки механическими средствами на поверхности арматуры получают элемент в виде спирали. В этом способе пучки углеродных волокон на поверхности арматуры могут быть разрезаны, что влияет на предел прочности на растяжение и жесткость арматуры и приводит к лишнему расходу определенных материалов.

Суть изобретения

Цель настоящего изобретения заключается в преодолении указанных выше недостатков и в предоставлении арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности и способа ее получения, при этом способ получения обладает такими преимуществами, как единоразовое машинное формование, простая и удобная технология, а также то, что забивание формы легко не происходит; поверхность получаемой арматуры из высокопрочного композиционного материала из углеродного волокна с ребрами из эпоксидной смолы на поверхности содержит непрерывное спиральное ребро из эпоксидной смолы, поэтому она обладает такими особенностями, как удобство анкеровки, а также высокая прочность и высокий модуль.

Цель настоящего изобретения достигается посредством следующего: арматура из композиционного материала из углеродного волокна, содержащая углеродные волокна и матрицу на основе эпоксидной смолы; поверхность указанной арматуры содержит непрерывное спиральное ребро из эпоксидной смолы, при этом толщина ребра из смолы находится в пределах от 0,2 мм до 0,4 мм, ширина ребра из смолы находится в пределах от 5 мм до 7 мм, а шаг спирали ребра из смолы находится в пределах от 2 мм до 4 мм.

Способ получения арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности включает следующее:

этап 1: из шпулярника вытягивают определенное количество пучков углеродных волокон, при этом количество пучков углеродных волокон регулируют в зависимости от необходимого диаметра производимой арматуры, и за счет регулирования количества пучков волокон объемное содержание волокон обеспечивают равным от 70% до 78%; скорость вытягивания обеспечивают равной от 300 мм/мин до 600 мм/мин; посредством регулятора натяжения регулируют натяжение нити, при этом для обеспечения того, чтобы во время пропитывания ориентация пучков углеродных волокон оставалась прямой, натяжение обеспечивают равным от 5,88 Н до 9,80 Н;

этап 2: пучки углеродных волокон втягивают в емкость с эпоксидной смолой для пропитывания эпоксидной смолой; после выведения из емкости с эпоксидной смолой их вводят в инструмент предварительного формования и выжимают лишнюю эпоксидную смолу с получением заготовки для арматуры предварительно определенного размера, при этом внутренний диаметр инструмента предварительного формования обеспечивают равным от 2 мм до 10 мм, а эпоксидную смолу получают с применением матрицы на основе смолы, отвердителя и катализатора, массовое соотношение которых составляет 1000:860:13,6;

этап 3: во время перемещения заготовки для арматуры вперед заготовку для арматуры обвязывают нейлоновой лентой, при этом промежуток обвязывания нейлоновой лентой сохраняют равным от 5 мм до 7 мм; контролируют усилие натяжения при обвязывании с обеспечением того, что нейлоновая лента только прилегает к поверхности заготовки для арматуры, а не туго затянута на заготовке для арматуры, при этом ориентация пучков углеродных волокон на поверхности заготовки для арматуры по-прежнему является прямой, не возникает колебаний; ширина нейлоновой ленты составляет от 2 мм до 4 мм, а толщина составляет от 0,5 мм до 1 мм;

этап 4: заготовку для арматуры с поверхностью, обвязанной нейлоновой лентой, тянут и последовательно пропускают через 5 сушильных шкафов, при этом температуру в 5 сушильных шкафах устанавливают равной соответственно 150°C, 150°C, 160°C, 180°C и 180°C; после предварительного подогрева в первом сушильном шкафу в результате нагревания происходит расширение эпоксидной смолы внутри заготовки для арматуры с очень хорошим увеличением ее текучести, и она начинает выходить изнутри заготовки для арматуры наружу с постепенным заполнением промежутков между нейлоновой лентой; после прохождения второго сушильного шкафа эпоксидная смола переходит в гелеобразное состояние; после прохождения третьего сушильного шкафа происходит предварительное отверждение эпоксидной смолы; после прохождения последних двух сушильных шкафов происходит завершение процесса отверждения; при этом на толщину ребра из смолы влияет время предварительного подогрева, и время предварительного подогрева регулируют путем регулирования длины первого сушильного шкафа.

этап 5: после завершения отверждения нейлоновую ленту на поверхности арматуры разматывают; эпоксидная смола в промежутках между нейлоновой лентой образует спиральное ребро из смолы, а в местах, где была намотана нейлоновая лента, проходит спиральная канавка.

этап 6: полученную арматуру с ребрами из смолы после прохождения через тянущее устройство наматывают на намоточное устройство.

По сравнению с аналогами, известными из уровня техники, преимущества настоящего изобретения следующие:

1. Поверхность арматуры снабжена непрерывным спиральным ребром из эпоксидной смолы; ребро из эпоксидной смолы образует единое целое с матрицей на основе эпоксидной смолы в арматуре, при этом прочность сцепления между ними является высокой, поэтому отделение происходит нелегко. После анкеровки с применением системы анкерного скрепления с эпоксидной смолой между материалом для анкерного скрепления с эпоксидной смолой и ребром из эпоксидной смолы на поверхности арматуры возникает сила механического взаимодействия, что значительно повышает эффективность анкеровки.

2. Согласно изобретению в процессе формирования при обвязывании нейлоновой лентой в отношении пучков углеродных волокон не происходит сдавливания, и за счет наличия натяжения пучков углеродных волокон ориентация пучков углеродных волокон в направлении длины арматуры остается прямой. Это отличается от того, как в известных технологиях арматуру туго стягивают нейлоновой лентой, и от тугого стягивания возникают пережатые участки, и исключает недостатки, заключающиеся в сдавливании нейлоновой лентой верхнего слоя углеродных волокон и нарушении прямолинейности углеродных волокон. Поэтому арматура, полученная с применением способа согласно настоящему изобретению, характеризуется высокой прочностью и высоким модулем. Проведенные испытания показали, что у арматуры, полученной способом согласно настоящему изобретению, предел прочности на растяжение может достигать приблизительно 3300 МПа, а модуль растяжения может достигать приблизительно 170 ГПа.

3. Способ согласно настоящему изобретению характеризуется такими особенностями, как формирование за одно целое и простота технологии.

Описание прилагаемых графических материалов

На фиг. 1 представлено схематическое изображение конструкции арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности согласно настоящему изобретению.

На фиг. 2 представлена схема технологического процесса способа получения арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности согласно настоящему изобретению.

На фигурах:

1 - арматура из композиционного материала из углеродного волокна; 2 - ребро из смолы.

Конкретный способ осуществления

Ниже настоящее изобретение описано подробно с помощью вариантов осуществления со ссылками на прилагаемые графические материалы.

Ниже с помощью вариантов осуществления, в которых делается ссылка на прилагаемые графические материалы, будут ясно и полностью описаны технические решения согласно вариантам осуществления настоящего изобретения, при этом является очевидным, что описанные варианты осуществления являются лишь некоторыми, а не всеми вариантами осуществления. Все другие варианты осуществления, полученные специалистами в данной области техники на основании вариантов осуществления настоящего изобретения без творческого труда, входят в объем защиты настоящего изобретения.

Вариант осуществления 1

Арматура из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности, содержащая углеродные волокна и матрицу на основе эпоксидной смолы; диаметр арматуры составляет 7 мм; на поверхности арматуры выполнено непрерывное спиральное ребро из эпоксидной смолы; толщина ребра из смолы составляет 0,25 мм; шаг спирали ребра из смолы составляет 2,4 мм.

Способ получения арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности включает следующие этапы, на которых:

этап 1: вытягивают 62 пучка углеродных волокон из шпулярника, при этом скорость вытягивания составляет 350 мм/мин и с помощью регулятора натяжения регулируют натяжение нити до 6,88 Н;

этап 2: пучки углеродных волокон втягивают в емкость с эпоксидной смолой для пропитывания эпоксидной смолой; после выведения из емкости с эпоксидной смолой их вводят в инструмент предварительного формования и выжимают лишнюю эпоксидную смолу, при этом внутренний диаметр инструмента предварительного формования составляет 7 мм, и получают заготовку для арматуры диаметром 7 мм, при этом объемное содержание волокон в заготовке для арматуры составляет 72%, а эпоксидную смолу получают с применением матрицы на основе смолы, отвердителя и катализатора, массовое соотношение которых составляет 1000:860:13,6;

этап 3: во время перемещения заготовки для арматуры вперед заготовку для арматуры обвязывают нейлоновой лентой, при этом промежуток обвязывания нейлоновой лентой сохраняют равным 6,3 мм; контролируют усилие натяжения при обвязывании с обеспечением того, что нейлоновая лента только прилегает к поверхности заготовки для арматуры, а не туго затянута на заготовке для арматуры, при этом ориентация пучков углеродных волокон на поверхности заготовки для арматуры по-прежнему является прямой, не происходит сдавливания нейлоновой лентой, не возникает колебаний; ширина нейлоновой ленты составляет 2,5 мм, а толщина - 0,7 мм;

этап 4: заготовку для арматуры с поверхностью, обвязанной нейлоновой лентой, со скоростью вытягивания 250-600 мм/мин последовательно пропускают через 5 сушильных шкафов, при этом температура в 5 сушильных шкафах установлена равной соответственно 150°C, 150°C, 160°C, 180°C и 180°C; после предварительного подогрева в первом сушильном шкафу в результате нагревания происходит расширение эпоксидной смолы внутри заготовки для арматуры с очень хорошим увеличением ее текучести, и она начинает выходить изнутри заготовки для арматуры наружу с постепенным заполнением промежутков между нейлоновой лентой; после прохождения второго сушильного шкафа эпоксидная смола переходит в гелеобразное состояние; после прохождения третьего сушильного шкафа происходит предварительное отверждение эпоксидной смолы; после прохождения последних двух сушильных шкафов происходит завершение процесса отверждения; на толщину ребра из смолы влияет время предварительного подогрева, при этом время предварительного подогрева регулируется путем регулирования длины первого сушильного шкафа; в этой заявке длина первого сушильного шкафа установлена равной 3-7 м; сушильный шкаф может иметь секционный нагрев, поэтому можно регулировать фактическую длину сушильного шкафа.

этап 5: после завершения отверждения нейлоновую ленту на поверхности арматуры разматывают; эпоксидная смола в промежутках между нейлоновой лентой образует спиральное ребро из смолы, а в местах, где была намотана нейлоновая лента, проходит спиральная канавка.

этап 6: полученную арматуру с ребрами из смолы после прохождения через тянущее устройство наматывают на намоточное устройство, при этом у полученной арматуры с ребрами из смолы предел прочности на растяжение составляет 3436 МПа, а модуль растяжения составляет 171 ГПа.

Вариант осуществления 2

Арматура из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности, содержащая углеродные волокна и матрицу на основе эпоксидной смолы; диаметр арматуры составляет 5 мм; на поверхности арматуры выполнено непрерывное спиральное ребро из эпоксидной смолы; толщина ребра из смолы составляет 0,2 мм; шаг спирали ребра из смолы составляет 2 мм.

Способ получения арматуры из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности включает следующие этапы, на которых:

этап 1: вытягивают 32 пучка углеродных волокон из шпулярника, при этом скорость вытягивания составляет 450 мм/мин и с помощью регулятора натяжения регулируют натяжение нити до 6,2 Н;

этап 2: пучки углеродных волокон втягивают в емкость с эпоксидной смолой для пропитывания эпоксидной смолой; после выведения из емкости с эпоксидной смолой их вводят в инструмент предварительного формования и выжимают лишнюю эпоксидную смолу, при этом внутренний диаметр инструмента предварительного формования составляет 5 мм, и получают заготовку для арматуры диаметром 5 мм, при этом объемное содержание волокон в заготовке для арматуры составляет 75%, а эпоксидную смолу получают с применением матрицы на основе смолы, отвердителя и катализатора, массовое соотношение которых составляет 1000:860:13,6;

этап 3: во время перемещения заготовки для арматуры вперед заготовку для арматуры обвязывают нейлоновой лентой, при этом промежуток обвязывания нейлоновой лентой сохраняют равным 5,2 мм; контролируют усилие натяжения при обвязывании с обеспечением того, что нейлоновая лента только прилегает к поверхности заготовки для арматуры, а не туго затянута на заготовке для арматуры, при этом ориентация пучков углеродных волокон на поверхности заготовки для арматуры по-прежнему является прямой, не возникает колебаний; ширина нейлоновой ленты составляет 2 мм, а толщина - 0,5 мм;

этап 4: заготовку для арматуры с поверхностью, обвязанной нейлоновой лентой, со скоростью вытягивания 400 мм/мин последовательно пропускают через 5 сушильных шкафов, при этом температура в 5 сушильных шкафах установлена равной соответственно 150°C, 150°C, 160°C, 180°C и 180°C; после предварительного подогрева в первом сушильном шкафу в результате нагревания происходит расширение эпоксидной смолы внутри заготовки для арматуры с очень хорошим увеличением ее текучести, и она начинает выходить изнутри заготовки для арматуры наружу с постепенным заполнением промежутков между нейлоновой лентой; после прохождения второго сушильного шкафа эпоксидная смола переходит в гелеобразное состояние; после прохождения третьего сушильного шкафа происходит предварительное отверждение эпоксидной смолы; после прохождения последних двух сушильных шкафов происходит завершение процесса отверждения; в этом варианте осуществления длина первого сушильного шкафа составляет 4 м.

этап 5: после завершения отверждения нейлоновую ленту на поверхности арматуры разматывают; эпоксидная смола в промежутках между нейлоновой лентой образует спиральное ребро из смолы, а в местах, где была намотана нейлоновая лента, проходит спиральная канавка.

этап 6: полученную арматуру с ребрами из смолы после прохождения через тянущее устройство наматывают на намоточное устройство, при этом у полученной арматуры с ребрами из смолы предел прочности на растяжение составляет 3560 МПа, а модуль растяжения составляет 174 ГПа.

В этой заявке отвердитель выбран из ментандиамина (MDA) и ариламина, при этом в качестве ариламина может быть выбран m-XDA, у которого температура HDT составляет 130-150°C, а коэффициент расширения большой. Катализатором может быть анионный аминный катализатор, минеральная соль, неорганическое основание, в том числе хлорид кальция, гидроксид лития и т.п. Однако изобретение вышеуказанными материалами не ограничивается.

Рассмотренные выше предпочтительные варианты осуществления настоящего изобретения представлены исключительно в помощь для описания настоящего изобретения. В предпочтительных вариантах осуществления исчерпывающе не изложены все подробности, и настоящее изобретение также не ограничивается лишь представленным конкретным способом осуществления. Разумеется, на основании содержания этого описания может быть предложено очень много изменений и модификаций. Эти варианты осуществления, выбранные и подробно описанные в этом описании, предназначены для лучшего объяснения принципов и практического применения настоящего изобретения, чтобы специалисты в данной области техники благодаря этому могли хорошо понимать и применять настоящее изобретение. Настоящее изобретение ограничено лишь формулой изобретения, ее полным объемом и эквивалентами.

1. Арматура из высокопрочного композиционного материала из углеродного волокна с полимерными ребрами на поверхности, содержащая углеродные волокна и матрицу на основе эпоксидной смолы, отличающаяся тем, что поверхность указанной матрицы арматуры содержит непрерывное спиральное ребро из эпоксидной смолы, при этом толщина указанного ребра из смолы находится в пределах от 0,2 до 0,4 мм, ширина указанного ребра из смолы находится в пределах от 5 до 7 мм, а шаг спирали указанного ребра из смолы находится в пределах от 2 до 4 мм.

2. Способ получения арматуры по п. 1, отличающийся тем, что указанный способ включает следующие этапы, на которых:

этап 1: из шпулярника вытягивают определенное количество пучков углеродных волокон, при этом количество пучков углеродных волокон регулируют в зависимости от необходимого диаметра производимой арматуры, и за счет регулирования количества пучков волокон объемное содержание волокон в заготовке для арматуры составляет от 70 до 78%; скорость вытягивания регулируют в пределах от 300 до 600 мм/мин; посредством регулятора натяжения регулируют натяжение нити, при этом натяжение регулируют в пределах от 5,88 до 9,80 Н;

этап 2: пучки углеродных волокон втягивают в емкость с эпоксидной смолой для пропитывания эпоксидной смолой; после выведения из емкости с эпоксидной смолой их вводят в инструмент предварительного формования и выжимают лишнюю эпоксидную смолу с получением заготовки для арматуры предварительно определенного размера, при этом внутренний диаметр инструмента предварительного формования составляет от 2 до 10 мм;

этап 3: во время перемещения заготовки для арматуры вперед заготовку для арматуры обвязывают нейлоновой лентой, при этом контролируют усилие натяжения при обвязывании, и нейлоновая лента только прилегает к поверхности заготовки для арматуры, а не туго затянута на заготовке для арматуры, при этом ориентация пучков углеродных волокон на поверхности заготовки для арматуры по-прежнему является прямой, ширина нейлоновой ленты составляет от 2 до 4 мм, а толщина составляет от 0,5 до 1 мм;

этап 4: заготовку для арматуры с поверхностью, обвязанной нейлоновой лентой, тянут и последовательно пропускают через 5 сушильных шкафов, при этом температуру в 5 сушильных шкафах устанавливают равной соответственно 150°C, 150°C, 160°C, 180°C и 180°C; после предварительного подогрева в первом сушильном шкафу в результате нагревания происходит расширение эпоксидной смолы внутри заготовки для арматуры с очень хорошим увеличением ее текучести, и она начинает выходить изнутри заготовки для арматуры наружу с постепенным заполнением промежутков между нейлоновой лентой; после прохождения второго сушильного шкафа эпоксидная смола переходит в гелеобразное состояние; после прохождения третьего сушильного шкафа происходит предварительное отверждение эпоксидной смолы; после прохождения последних двух сушильных шкафов происходит завершение процесса отверждения;

этап 5: после завершения отверждения нейлоновую ленту на поверхности арматуры разматывают, при этом заполняющая промежутки между нейлоновой лентой эпоксидная смола образует спиральное ребро из смолы, а в местах, где была намотана нейлоновая лента, проходит спиральная канавка;

этап 6: полученную арматуру с ребрами из смолы после прохождения через тянущее устройство наматывают на намоточное устройство.

3. Способ по п. 2, отличающийся тем, что на указанном этапе 2 эпоксидную смолу получают с применением матрицы на основе смолы, отвердителя и катализатора, массовое соотношение которых составляет 1000:860:13,6.



 

Похожие патенты:

Настоящее изобретение относится к полимерной композиции для получения высокопрочных, термо- и огнестойких сферопластиков. Указанная композиция представляет собой полимерную композицию на основе эпоксидных смол с повышенной удельной функциональностью, азотсодержащих отвердителей и полых микросфер диаметром от 10 до 500 мкм.

Изобретение относится к пленке на основе термопластичного полиолефинового эластомера, а также к изделию, включающему данную пленку. Пленка по изобретению содержит термопластичную полиолефиновую эластомерную матрицу, представляющую собой непрерывную фазу, и добавку-нановключение, диспергированную в непрерывной фазе в виде дискретных доменов, имеющих средний размер поперечного сечения в диапазоне от 1 до 1000 нанометров перед растягиванием.

Изобретение относится к пропиточным составам, применяющимся в строительстве в качестве средств коррозионной защиты. Предложен многофункциональный состав на основе термопластичного отхода топливно-энергетического комплекса повышенной долговечности, содержащий техническую серу и органический растворитель в массовом соотношении 1:2, каолин в количестве от 8 до 10% от массы технической серы и химическую добавку отвердителя на основе аминов в количестве 0,01% от массы органического растворителя, при этом техническая сера имеет плотность не менее 1,3 г/см3 с массовой долей серы от 99,1 до 99,8% в своем химическом составе, массовая доля оксида железа в химическом составе каолина составляет от 1 до 1,8%, отвердитель представляет собой аминный водный раствор с массой активного вещества 90% и содержанием воды от 8 до 10%, а органический растворитель представляет собой этиленгликоль.

Изобретение относится к отверждаемым композициям эпоксидных смол. Предложена система эпоксидной смолы для нанесения на подложку, состоящая из компонента на основе жидкой эпоксидной смолы, отвердителя, содержащего соединение, имеющее имидазольную группу, и неароматического полиольного соединения, где компонент на основе жидкой эпоксидной смолы, в свою очередь, содержит помимо жидкой эпоксидной смолы акрилатный мономер, включающий акриловый сложный эфир монола или полиола, метакриловый сложный эфир моноола или полиола, полиакриловый или полиметакриловый сложный эфир полиола или их комбинацию.

Группа изобретений относится к области композиционных конструкций, в частности к области отверждения композиционных блоков, содержащих эпоксисодержащие предварительно пропитанные компоненты. Описан способ отверждения блока эпоксисодержащего препрега для композиционного материала, включающий размещение блока эпоксисодержащего препрега в замкнутом пространстве, при этом указанное замкнутое пространство содержит впускное отверстие, указанный блок препрега содержит слои препрега, подачу потока аммиаксодержащего соединения в замкнутое пространство через впускное отверстие, при этом указанный поток подают в замкнутое пространство до обеспечения предварительно заданной концентрации, поддержание потока аммиаксодержащего соединения в замкнутое пространство при предварительно заданной концентрации в течение предварительно заданного времени и отверждение блока эпоксисодержащего препрега.
Настоящее изобретение относится к способу получения антифрикционного полимерного композита, состоящего из антифрикционного покрытия на основе эпоксидной смолы ЭД-20 или смеси ЭД-20 с полиэфируретанэпоксидным жидким каучуком ППГ-3А, основного минералэпоксидного материала типа «Синтегран» и наносимой на него клеевой прослойки в виде полиуретанового полимера на основе простых или сложных полиэфиров 2,4-толуилендиизоцианата и 4,4-метилен-бис-ортохлорхлоранилина, на которую при достижении ею состояния «на отлип» наносится указанное антифрикционное покрытие.
Изобретение относится к эпоксидным связующим, используемым для изготовления композиционных материалов методами вакуумной инфузии, намотки, прессования и иными способами. Предложено эпоксидное связующее для армированных пластиков, включающее эпоксидно-диановую смолу, отвердитель, ускоритель, термопластичный модификатор и активный разбавитель.

Настоящее изобретение относится к антипирен-катализатору для получения полимерных материалов на основе бензоксазинов и отверждаемой композиции. Данный антипирен-катализатор представляет собой гексакис-(3-метилфениламино)циклофосфазен общей формулы Отверждаемая композиция включает в мас.ч.: бензоксазин 100; антипирен-катализатор 0,1-40 и эпоксидную смолу 0-75.

Изобретение относится к области получения полимерных композиционных материалов, а именно создания термореактивной полимерной композиции для формовых и неформовых изделий разной степени сложности, имеющих в качестве армирующей основы углеродную ткань, которые могут быть использованы в космической отрасли машиностроения.

Изобретение относится к области строительных материалов и предназначено для армирования строительных конструкций, позволяя получить усиленную напряженную композитную арматуру, обладающую улучшенными физико-механическими характеристиками, повышенной стойкостью к агрессивным средам. Способ получения полимерно-композитного материала представляет собой многоэтапное изготовление коллоидного раствора на базе эпоксидной смолы с добавлением углеродных нанотрубок с применением нагрева и ультразвукового воздействия.

Изобретение относится к области создания теплопроводящих материалов. Предложена полимерная композиционная теплопроводная паста для сопряжения теплонапряженных различных устройств и деталей, которая содержит теплопроводный неорганический наполнитель, выбранный из нитрида алюминия, карбида кремния и/или графита, связующее в виде органического полидиметилсилоксана и волокнистый или нановолокнистый модификатор, выбранный из углеродных нанотрубок и волокнистого кремния, взятый в количестве от 0,1 до 15 % от массы порошка неорганического наполнителя.
Наверх