Способ получения сферического алюмооксидного носителя

Предлагаемое изобретение относится к способу получения сферического алюмооксидного носителя катализатора. Для получения носителя готовят смесь растворов оксихлорида алюминия, уротропина в концентрации 30 мас.% и карбамида, перемешивают с получением псевдозоля кислотностью 5,0-5,6 рН. Полученный псевдозоль формуют прокапыванием в минеральное масло при температуре 95°С и выдерживанием полученных сферических гранул в течение 5-6 ч. Отделенные сферические гранулы промывают и подают на кристаллизацию в раствор аммиака с выдержкой в течение 3-4 ч при той же температуре, промывают деионизированной водой, просушивают и прокаливают. При этом концентрация раствора карбамида для приготовления псевдозоля составляет 5-30 мас.%, концентрация оксихлорида алюминия в пересчете на соотношение гидроксид алюминия/вода составляет 230-260 г Al(ОН)3/1 л H2O, а раствор аммиака используют с концентрацией 5 мас.%. Это обеспечивает сокращение технологического процесса и повышение удельной поверхности сферических гранул алюмооксидного носителя до 190-240 м2/г. 3 з.п. ф-лы, 4 пр.

 

Предлагаемое изобретение относится к способу получения сферического алюмооксидного носителя методом масляного формования с целью применения его в качестве носителя катализаторов для процесса непрерывного риформинга в нефтеперерабатывающей отрасли. Жесткие условия процесса непрерывного каталитического риформинга предъявляют высокие требования к катализатору, носитель которого должен обеспечивать ряд структурно-механических показателей, таких как прочность, диаметр сферы, насыпная плотность, объем пор, удельная поверхность и др.

Известно несколько способов получения сферических гранул оксида алюминия: окатывание влажных порошков и формование в виде капель. Сферические гранулы, произведенные по первому способу, обладают малой прочностью, высокой истираемостью и большим разбросом по размеру частиц, что неприемлемо для производства носителей катализаторов, используемых в движущемся слое.

Сферический оксид алюминия, полученный по второму способу, имеет узкое распределение частиц по диаметру, улучшенные механические свойства и контролируемое распределение пор. Способ реализуется в виде углеводородно-аммиачного и масляного формований, отличающихся не только стадиями приготовления сферического носителя, но и составом псевдозоля. Псевдозоль для углеводородно-аммиачного способа формования состоит из высокочистого бемита или псевдобемита, чьи различные марки определяют пористую структуру и прочность алюмооксидного носителя.

Состав псевдозоля для масляного формования представляет собой смесь растворов предшественников гидроксида алюминия и гелеобразующих (отверждающих) веществ. Предшественниками гидроксида алюминия выступают основные соли алюминия, в первую очередь оксихлорид, либо порошок бемита. Гелеобразующими компонентами являются уротропин и карбамид - слабые органические основания, выделяющие при нагревании аммиак. Формование проводится через вертикально расположенную фильеру, находящуюся над слоем горячего минерального масла. Формуемый золь вытекает из фильеры по каплям, которые по мере движения в колонне, наполненной горячим маслом, приобретают сферическую форму и отвердевают в процессе реакции нейтрализации.

Известен способ получения сферического оксида алюминия, в котором подаваемый на формование золь представляет собой смесь оксихлорида алюминия (ОХА) и уротропина. Оптимальное содержание алюминия в оксихлориде составляет от 18 до 30% мас. в пересчете на Al2O3, концентрация уротропина 28-30% мас. Кратность смешения растворов 1:1 по объему. После формования в масле гранулы подвергают длительной выдержке либо в горячем масле, либо в 10% растворе хлорида аммония при температуре 90-95°С. После этого следует выдержка в растворе аммиака концентрацией 1-5%, промывка дистиллированной водой высушивание и прокаливание. Варьированием концентраций NH4Cl и NH3 получают сферы с насыпной плотностью от 0,24 до 0,73 г/см3 и объемом пор до 0,78 см3/г.US 4318896 А, опубл. 03.09.1982.

Недостатком данного способа является длительная выдержка носителя (суммарно 20 и более часов) в горячем масле и растворе аммиака.

Выдержку в горячем масле и растворе аммиака удается упразднить, если исходными веществами, подаваемыми на масляное формование, являются псевдобемит, гелеобразующий агент (карбамид), вода и раствор кислоты. К полученному золю добавляют второй гелеобразующий агент (уротропин), а затем подают в виде капель в колонну, наполненную горячим маслом, с образованием сферических частиц. Далее частицы оксида алюминия промывают, сушат и прокаливают.CN 105502447 В, опубл. 30.06.2017.

Недостатком способа получения сферического оксида алюминия является невозможность регулирования пористой структуры носителя, так как она изначально определяется структурой исходного псевдобемита.

Наиболее близким к предлагаемому техническому решению является способ получения сферического оксида алюминия, согласно которому на масляное формование подается смесь уротропин-оксихлорида алюминия (ОХА), причем количество уротропина достаточное для нейтрализации 80-90% хлорид-ионов. После формования затвердевшие сферы помещают в автоклав, заполненный керосином, и выдерживают при температуре 130-150°С в течение 3-5 ч. Далее полупродукт переносят в аппарат циркуляционной промывки, которую проводят при температуре 85 - 95°С в течение 5 - 10 ч водой с добавлением небольшого количества аммиака (рН 8,8 - 9,5), после чего промывают четырехкратным количеством чистой воды. Высушенные и прокаленные образцы имеют насыпную плотность 0,5-0,7 г/см3, объем пор 0,6-0,7 см3/г, удельную площадь поверхности 170-180 м2/г и прочность порядка 10 кг/гранулу. US 4273735А, опубл. 16.06.1981.

Недостатком данного способа является сложное аппаратурное оформление процессов нейтрализации и кристаллизации.

Техническая задача, решаемая заявленным изобретением, заключается в разработке способа получения сферического алюмооксидного носителя катализатора с использованием раствора карбамида, определенная концентрация которого позволяет сократить суммарное время процессов нейтрализации и кристаллизации и получить сферический оксид алюминия с заданными структурно-механическими свойствами: диаметр 1,6-1,8 мм, прочность не менее 2 кг/гранулу, насыпная плотность 0,5-0,7 г/см3, объем пор 0,5-0,8 см3/г и удельная поверхность 190-240 м2/г.

Технический результат от реализации заявленного изобретения заключается в сокращении технологического процесса и повышении удельной поверхности сферических гранул алюмооксидного носителя катализатора до 190-240 м2/г.

Технический результат от реализации заявленного изобретения достигается способом получения сферического алюмооксидного носителя катализатора, согласно которому, готовят смесь растворов оксихлорида алюминия, уротропина в концентрации 30 масс. % и карбамида, перемешивают с получением псевдозоля кислотностью 5,0-5,6 рН, формуют полученный псевдозоль прокапыванием в минеральное масло при температуре 95°С и выдерживанием полученных сферических гранул в течение 5-6 ч, после чего сферические гранулы отделяют, промывают и подают на кристаллизацию в растворе аммиака с выдержкой в течение 3-4 ч при той же температуре, промывают деионизированной водой, просушивают и прокаливают.

Достижению технического результата также способствует то, что концентрация раствора карбамида для приготовления псевдозоля составляет 5-30 масс. %, концентрация оксихлорида алюминия в пересчете на соотношение гидроксид алюминия/вода составляет: 230 - 260 г Al(ОН)3/1 л H2O и то, что используют раствор аммиака с концентрацией 5 масс. %.

Вышеприведенные существенные отличительные признаки обеспечивают сокращение суммарного времени выдержки в минеральном масле и растворе аммиака до 7-10 ч и повышение удельной поверхности сферических гранул до 190-240 м2/г.

Способ осуществляют следующим образом.

На формование подают псевдозоль, состоящий из раствора оксихлорида алюминия и гелеобразующих компонентов: уротропина 30 масс. %. и раствора карбамида с концентрацией 5-30 масс. %. При этом увеличение содержания карбамида в псевдозоле приводит к уменьшению времени стадий нейтрализации и кристаллизации за счет пониженного газообразования внутри гранул в процессе нейтрализации путем химического взаимодействия формальдегида с карбамидом:

2CH2O+(NH2)2CO=CO(NHOCH3)2

CH2O+(NH2)2CO=NH2CONHOCH3

CH2O+2(NH2)2CO=(NH2CONH)2CH2

Псевдозоль, подаваемый на масляное формование, должен соответствовать следующим требованиям:

- Концентрация оксихлорида алюминия в пересчете на соотношение гидроксид алюминия/вода: 230 - 260 г Al(ОН)3/1 л H2O;

- кислотность псевдозоля: 5,0 - 5,6 ед. рН.

Формование проводится через вертикальную фильеру с выходным диаметром 0,8-1,0 мм, расположенную на высоте 25-35 мм над слоем минерального масла, имеющего кинематическую вязкость 6-9 мм2/с при температуре нагрева колонны 95°С. Формуемый состав прокапывается в масляную колонну, где капли приобретают сферическую форму, нейтрализуются и отвердевают по мере движения через слой масла.

Для завершения процессов нейтрализации и кристаллизации сферические гранулы помещают в минеральное масло, нагретое до температуры 95°С, а затем при той же температуре в раствор аммиака с концентрацией 5 масс. %.

Конкретная реализация способа получения сферического алюмооксидного носителя катализатора методом масляного формования раскрыта в следующих примерах, в которых псевдозоль, подаваемый на формование, различается концентрацией карбамида, что определяет время проведения стадии нейтрализации.

Пример 1.

Предшественником оксида алюминия является раствор оксихлорида алюминия со следующими характеристиками: массовая доля Al2O3 20,0%, массовая доля хлора 7,5%, кислотность при температуре 20°С 3,54 ед. рН.

Смесь, состоящую из 80 мл ОХА, 45 мл раствора уротропина (30 масс. %), 45 мл раствора карбамида (5 масс. %), перемешивают до получения псевдозоля с рН=5,0 и подают на формование. Формование проводят через вертикальную фильеру с выходным диаметром 0,8-1,0 мм, расположенную на высоте 30 мм над слоем минерального масла, имеющего кинематическую вязкость 8 мм2/с при температуре нагрева колонны 95°С. Формуемый псевдозоль прокапывают в масляную колонну, где капли приобретают сферическую форму, нейтрализуются и отвердевают по мере движения через слой масла.

Полученные сферические гранулы выдерживают в течение 6 ч в нагретом до температуры 95°С минеральном масле, после чего отделяют от масла и промывают гексаном либо петролейным эфиром. Далее сферические гранулы помещают в раствор аммиака с концентрацией 5 масс. % и выдерживают в течение 4 ч при температуре 95°С, после чего промывают деионизированной водой, просушивают и прокаливают ступенчато: 40°С-2 ч, 60°С-2 ч, 80°С-2 ч, 110°С-2 ч. Далее температуру повышают со скоростью 2°С/мин до температуры 600°С и выдерживают при этой температуре в течение 7 ч. Получен сферический оксид алюминия с заданными структурно-механическими свойствами: диаметр 1,6-1,8 мм, прочность 2,5 кг/гранулу, насыпная плотность 0,7 г/см3, объем пор 0,5 см3/г и удельная поверхность 240 м2/г.

Пример 2.

Количество исходных веществ, условия формования, выдерживания в растворе аммиака аналогичны перечисленным в примере 1, за исключением концентрации раствора карбамида (10 масс. %). Полученный псевдозоль имеет рН=5,1. При этом время выдерживания в минеральном масле при температуре 95°С составляет 5 ч. Получен сферический оксид алюминия с заданными структурно-механическими свойствами: диаметр 1,6-1,8 мм, прочность 2,7 кг/гранулу, насыпная плотность 0,6 г/см3, объем пор 0,6 см3/г и удельная поверхность 220 м2/г.

Пример 3.

Количество исходных веществ, условия формования, выдерживания в растворе аммиака аналогичны перечисленным в примере 1, за исключением концентрации раствора карбамида (20 масс. %). Полученный псевдозоль имеет рН=5,3. При этом время выдерживания в минеральном масле при температуре 95°С составляет 4 ч. Получен сферический оксид алюминия с заданными структурно-механическими свойствами: диаметр 1,6-1,8 мм, прочность 3,0 кг/гранулу, насыпная плотность 0,6 г/см3, объем пор 0,6 см3/г и удельная поверхность 200 м2/г.

Пример 4.

Количество исходных веществ, условия формования, выдерживания в растворе аммиака аналогичны перечисленным в примере 1, за исключением концентрации раствора карбамида (30 масс. %). Полученный псевдозоль имеет рН=5,6. При этом время выдерживания в масле составляет 3 ч. Получен сферический оксид алюминия с заданными структурно-механическими свойствами: диаметр 1,6-1,8 мм, прочность 3,3 кг/гранулу, насыпная плотность 0,6 г/см3, объем пор 0,7 см3/г и удельная поверхность 190 м2/г.

1. Способ получения сферического алюмооксидного носителя катализатора, характеризующийся тем, что готовят смесь растворов оксихлорида алюминия, уротропина в концентрации 30 мас.% и карбамида, перемешивают с получением псевдозоля кислотностью 5,0-5,6 рН, формуют полученный псевдозоль прокапыванием в минеральное масло при температуре 95°С и выдерживанием полученных сферических гранул в течение 5-6 ч, после чего сферические гранулы отделяют, промывают и подают на кристаллизацию в раствор аммиака с выдержкой в течение 3-4 ч при той же температуре, промывают деионизированной водой, просушивают и прокаливают.

2. Способ по п. 1, отличающийся тем, что концентрация раствора карбамида для приготовления псевдозоля составляет 5-30 мас.%.

3. Способ по п. 1, отличающийся тем, что концентрация оксихлорида алюминия в пересчете на соотношение гидроксид алюминия/вода составляет 230-260 г Al(ОН)3/1 л H2O.

4. Способ по п. 1, отличающийся тем, что используют раствор аммиака с концентрацией 5 мас.%.



 

Похожие патенты:

Настоящее изобретение относится к гранулированным частицам с повышенной устойчивостью к истиранию и к способу их получения. Способ получения гранулированных частиц посредством грануляции в псевдоожиженном слое неорганических частиц включает подачу неорганических частиц, диспергированных в дисперсионной среде.

Данное изобретение относится к способу получения катализатора и к способу обработки сточных вод промышленного способа получения пропиленоксида в присутствии катализатора, который получен указанным способом. Способ включает: (i) получение смеси из одного или более мономеров ароматических спиртов и/или неароматических мономеров, растворителя, катализатора полимеризации, сшивающего агента, стабилизатора суспензии и одной или более солей металлов в условиях, достаточных для получения полимерных шариков, легированных одним или более металлами или их солями; (ii) карбонизацию, активацию и последующее восстановление полимерных шариков, полученных на стадии (i), с получением легированных наночастицами металла пористых углеродных шариков; (iii) химическое осаждение из паровой фазы в присутствии источника углерода на легированные наночастицами металла пористые углеродные шарики, полученные на стадии (ii), с получением легированных наночастицами металла пористых углеродных шариков, содержащих углеродные нановолокна; и (iv) легирование окислителем легированных наночастицами металла пористых углеродных шариков, содержащих углеродные нановолокна, полученных на стадии (iii), посредством смешивания указанных шариков с водными растворами, содержащими окислитель, при температуре в диапазоне от 40 до 60°C в течение периода от 4 до 12 часов, причем после смешивания катализатор отфильтровывают и высушивают.

Изобретение относится к способу получения сферического алюмооксидного носителя, включающему приготовление смеси порошков гидроксида алюминия, суспендирование, пептизацию раствором азотной кислоты, формование сферических гранул, просушивание и прокаливание, при этом готовят смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% высокопористого бемита, имеющего объем пор 0,9-1,1 см3/г, и среднепористого бемита, имеющего объем пор 0,7 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, или смесь, содержащую гидрооксид алюминия в виде 60-70 мас.% смеси высокопористых бемитов, имеющих объем пор 0,9-1,1 см3/г, и 30-40 мас.% малопористого псевдобемита, имеющего объем пор 0,5 см3/г, суспендируют водой, пептизируют с получением псевдозоля, перемешивают его, добавляют воду и вносят метилцеллюлозу в количестве 10-20 мас.% в расчете на прокаленный оксид алюминия, перемешивают до однородного состояния, а формование сферических гранул проводят методом углеводородно-аммиачного формования, перед просушиванием гранулы выдерживают на воздухе в течение 22-26 ч.

Изобретение относится к микросферическому катализатору жидкостного каталитического крекинга, содержащему Y-цеолит и ион бария, причем Y-цеолит содержит элементарную ячейку Y-цеолита, имеющую ионообменный центр III, и элементарная ячейка Y-цеолита содержит ион бария на ионообменном центре III. Изобретение также относится к способу изготовления микросферического катализатора.

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к катализатору глубокого каталитического крекинга нефтяных фракций для производства олефинов С2-С4 и высокооктанового бензина и к способу его получения. Микросферический катализатор крекинга получен из суспензии, включающей в своем составе по сухому остатку 25-35% масс.

Изобретение относится к каталитическому материалу для обработки выхлопного потока двигателя внутреннего сгорания, содержащему: пористую жаропрочную металлооксидную подложку, содержащую оксид алюминия, в форме агрегированных частиц; и содержащие родий полиметаллические наночастицы, причем по меньшей мере 50 мас.

Изобретение может быть использовано при получении подложки для катализаторов, используемых в процессе каталитического риформинга. Сфероидальные частицы оксида алюминия имеют удельную поверхность по БЭТ, составляющую 150-300 м2/г, средний диаметр частиц 1,2-3 мм, разброс диаметров частиц, выраженный через стандартное отклонение, не превышающее 0,1.

Изобретение относится к микросферам цеолита ZSM-5 для применения в качестве катализатора, компонента катализатора или промежуточного продукта катализатора для процессов конверсии углеводородов, сформированным 1) формированием смеси в микросферах, в которых смесь содержит материал на основе диоксида кремния и множества частиц, выбранных из группы, включающей по меньшей мере один материал высокой плотности с абсолютной объемной плотностью по меньшей мере 0.3 г/см3, кристаллы цеолита ZSM-5 и их комбинации; 2) прокаливанием микросфер и 3) взаимодействием и последующим нагреванием микросфер по меньшей мере с одним щелочным раствором, чтобы сформировать цеолит ZSM-5 in situ на микросферах, при этом микросферы цеолита ZSM-5 содержат не более чем 8 мас.% глины или прокаленного глинистого материала.

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs).

Изобретение относится к процессам каталитического крекинга тяжелых углеводородов с движущимся слоем катализатора и способу его приготовления. Описан гранулированный катализатор крекинга, включающий цеолит ReHY или HY, каолин, источники оксида алюминия и оксида кремния, при следующем содержании активного компонента: 5-30% масс.
Изобретение относится к области катализа. Описан способ приготовления носителя для катализатора гидроочистки, предназначенного для получения нефтепродуктов с низким содержанием серы, содержащего оксид алюминия и изолированные атомы лантана, в котором продукт быстрой термической обработки гидраргиллита измельчают до частиц со средним объемным диаметром агломератов частиц 5-25 мкм, затем гидратируют в 0,3 мас.% растворе азотной кислоты, фильтруют и отмывают от примесного натрия, затем влажный осадок подвергают гидротермальной обработке в виде суспензии в водном растворе азотной кислоты и источника лантана, проводят пептизацию порошка при перемешивании 2,5% водным раствором аммиака; экструдируют и после термообработки получают носитель, который содержит на своей поверхности изолированные атомы лантана размером порядка 0,1 нм, состоящие в химической связи La-O-Al, с поверхностной плотностью 5-50 атомов на 10 нм2 поверхности и отношением числа атомов Al к числу атомов La равным 50-10000, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.
Наверх