Средство для коррекции митохондриальной дисфункции

Изобретение относится к применению иммуномодулирующего средства для внутримышечных инъекций, содержащего муравьиный альдегид в количестве 0,076-0,078% в изотоническом растворе хлорида натрия 0,85-0,95%-ной концентрации для повышения мембранного потенциала митохондрий и повышения кислородзависимого метаболизма нейтрофилов. 6 ил., 4 табл., 2 пр.

 

Изобретение относится к области экспериментальной медицины и касается создания нового эффективного средства для коррекции митохондриальной дисфункции у лабораторных животных.

Митохондриальные заболевания включают в себя нарушения, вызываемые огромным разнообразием молекулярных повреждений или дефектов, причем фенотипическое проявление заболевания дополнительно усложняется стохастическими распределениями митохондрий в различных тканях.

Известна генетическая конструкция для коррекции митохондриальной дисфункции (см. патент РФ № 2642972 по кл. МПК A61K48/00, опуб. 29.01.2018), представляющая собой участок митохондриальной ДНК, отсутствующий в мутантной ДНК, содержащий на концах последовательности нуклеотидов, комплементарные олигонуклеотидам SEQ ID №1 и SEQ ID №2 из набора олигонуклеотидов.

Данная конструкция только в перспективе может быть использована для коррекции митохондриальной дисфункции. Однако следует учесть, что все эксперименты проведены пока только на культуре клеток и нет исследований на животных.

Известен способ коррекции митохондриальной дисфункции при ишемии мозга в эксперименте (см. патент Украины № 104516 по кл. МПК А61P 25/28, опубл. 10.02.2016), заключающийся во введении нейропротективного средства, в качестве которого используют цереброкурин, который вводят внутрибрюшинно раз в сутки в дозе 0,02 мл / 100 г веса животного в течение 21 дня.

Однако, следует принять во внимание, что наилучшие результаты этот препарат показал при интрацеребральном введении (инъекция непосредственно в мозг) при исследовании на монгольских песчанках (Meriones uniculatus). Данный метод введения травматичен и нежелателен при массовом применении препарата.

Наиболее близким к заявляемому является иммуномодулирующее средство для инъекций, содержащее активное начало и целевые добавки (см. патент РФ № 2077882 по кл. МПК А61К 31/115, опубл. 27.04.1997). В качестве активного начала оно содержит формальдегид, а в качестве целевых добавок NaCl и дистиллированную воду, при этом оно представляет собой инъекционный раствор, содержащий, мас.%: формальдегид 0,07 0,24, NaCl 0,9 0,95, дистиллированная вода - остальное до 100%.

Приведенные аналоги показывают, что создание средств для коррекции митохондриальных дисфункций является далеко не решенной задачей. Поэтому поиск новых средств коррекции весьма актуален.

Технической проблемой заявляемого изобретения является создание эффективного и простого в применении средства для коррекции митохондриальной дисфункции в эксперименте.

Техническим результатом является повышение мембранного потенциала митохондрий и повышение кислородзависимого метаболизма нейтрофилов.

Технический результат достигается применением иммуномодулирующего средства, содержащего муравьиный альдегид в количестве 0,076-0,078% в изотоническом растворе хлорида натрия 0,85-0,95%-ной концентрации в качестве средства для повышения мембранного потенциала митохондрий и повышение кислородзависимого метаболизма нейтрофилов.

Известно, что естественный метаболит - альдегид муравьиной кислоты используется для иммунокоррекции при различных нарушениях иммунного статуса организма (см. патент РФ № 2077882), для лечения вирусных инфекций (см. патент РФ № 2146134), в качестве холестеринорегулирующего средства (см. патент РФ № 2352331), для активизации собственных стволовых клеток организма (см. патент РФ № 2376985).

Однако, до настоящего времени неизвестно использование препарата на основе муравьиного альдегида для коррекции митохондриальной дисфункии у лабораторных животных.

Изобретение поясняется иллюстрациями, где представлено:

на фиг. 1 - субпопуляции клеток крови мышей всех групп, оцененных на предмет включения митохондриального красителя JC-1 и маркера апоптоза BCL-2, где А -оценка δψ потенциала митохондрий в пределах лимфоцитов (CD45+ Ly6G-), моноцитов (Ly6G+Cd45+) и нейтрофилов (Ly6G+CD45low), Б - количество BCL-2+, основного белка участвующего в апоптозе клеток.

на фиг. 2 - пример оценки δψ потенциала митохондрий различных популяций, а также пропорции мономеров и агрегатов лимфоцитов, нейтрофилов и моноцитов крови мыши: где А - точечный график расположения клеток оцениваемых популяций образца в пределах лимфоцитов (популяция CD45+ Ly6G-), в пределах мoноцитов (популяция Ly6G+Cd45+ клетки), в пределах нейтрофилов (популяция Ly6G+CD45low клеток), Б - пропорция мономеров (правый нижний квадрант) - 68,5% и пропорция агрегатов (активированные клетки, правый верхний квадрант) - 30,8% в пределах популяции лимфоцитов; В - пропорция мономеров (правый нижний квадрант) - 92,7% и пропорция агрегатов (правый верхний квадрант) - 7,3% в пределах нейтрофилов; Г - пропорция мономеров ( правый нижний квадрант) - 66,1% и пропорция агрегатов (активированные клетки, правый верхний квадрант) - 33,9% в пределах популяции моноцитов.

на фиг. 3, 4, 5 - изменения показателей кислород-зависимого метаболизма нейтрофилов крови через 3 часа после введения средства (фиг. 3), через 24 часа (фиг. 4), через 3 недели (фиг.5);

на фиг. 6 - сравнение средних показателей кислородзависимого метаболизма нейтрофилов крови методом хемилюминесценции во всех анализируемых группах мышей.

Водный раствор муравьиного альдегида (альдегид муравьиной кислоты) - прозрачная бесцветная жидкость со своеобразным острым запахом, смешивающаяся с водой и спиртом во всех соотношениях.

Муравьиный альдегид - представитель класса альдегидов НСОН. Представляет собой бесцветный газ с резким запахом, мол. массой 30,03, плотность его при 20°С равна 0,815, температура плавления 92°С, температура кипения 19,2°С. Хорошо растворим в воде, спирте.

Изотонический раствор натрия хлорида для инъекций - бесцветная прозрачная жидкость солоноватого вкуса. Раствор стерилен, апирогенен.

Хлорид натрия - кубические кристаллы или белый кристаллический порошок соленого вкуса, без запаха. Растворим в воде (1:3).

Заявляемое средство представляет собой прозрачную бесцветную жидкость без запаха слегка солоноватого вкуса.

Средство готовят следующим образом.

Берут 2 весовых части 36,5-37,5%-ного медицинского раствора муравьиного альдегида, добавляют его в 998 весовых частей стерильного 0,85-0,95%-ного раствора хлорида натрия для инъекций до получения 0,076-0,078%-ного раствора альдегида. Средство хранят в темном месте при температуре 15-35°С.

Для доказательств возможности коррекции митохондриальной дисфункции при введении заявляемого средства лабораторным животным проводилось 2 теста.

1. Проводилась оценка потенциала мембраны митохондрий с применением митохондриального флуоресцентного красителя JC-1, а также оценка пропорции клеток с признаками апоптоза на основании оценки пропорции BCL2+ популяций. Оба показателя оценивались иммунологически с применением метода проточной цитометрии.

2. Проводилась оценка кислородзависимой активации нейтрофилов методом хемилюминесценции

В первом тесте проводилась индивидуальная оценка активности митохондрий клеток крови каждого животного, во втором тесте для достижения адекватных результатов кровь животных пулировалась, при этом для каждой группы животных оценивалось 2 образца - кровь контрольной группы и пулированная кровь опытной группы.

Исследования проводились на 140 половозрелых мышах-самцах гибридах F1 (СВАхС57Вl6). Животные находились в стандартных полипропиленовых боксах для содержания животных в условиях вивария, при естественном световом режиме, на стандартном пищевом рационе (брикетированный корм ПК-120-1 ООО «Лабораторснаб», РФ) со свободным доступом к поилкам с водой.

Вся работа с лабораторными животными выполнялась в соответствии с общепринятыми этическими нормами и соответствовала правилам Европейской конвенции по защите животных, используемых для научных целей (ETS 123).

Средство вводили однократно внутримышечно в дозе 12,5 мл/кг, что соответствовало 0,25 мл препарата на мышь (масса тела мышей в среднем составляла 20,5±0,24 г.). Забой животных осуществляли методом декапитации под эфирным наркозом через 1, 3 и 24 часа после введения препарата. Контрольным животным вводили внутримышечно 0,25 мл 0,9% раствора хлористого натрия (физиологический раствор).

Оценка активности митохондрий под влиянием средства проводилась в нескольких группах животных:

1 - контроль (животные получали аналогичный испытуемому препарату объем физиологического раствора (0,9% раствор NaCL) -10 животных

2 - животные, получившие указанную дозу препарата и подвергнутые эвтаназии через 1 час от введения -20 животных

3 - животные, получившие указанную дозу препарата и подвергнутые эвтаназии через 3 часа от введения - 20 животных

4 - животные, получившие указанную дозу препарата и подвергнутые эвтаназии через 24 часа от введения - 20 животных

5 - животные, получившие препарат и подвергнутые эвтаназии через 3 недели отведения препарата -20 животных

6 - животные, получившие препарат двукратно (1-одномоментно с животными 2-5 групп и повторное введение через 3 недели от первого) и подвергнутые эвтаназии через 3 часа от повторного введения -20 животных.

Забор крови производили в одноразовые стерильные пробирки с раствором К2ЭДТА.

Пример 1. Изучение мембранного потенциала митохондрий (δψ).

Энергия, выделяемая в ходе реакций окисления в митохондриальной дыхательной цепи, хранится в виде отрицательного электрохимического градиента мембраны митохондрий, и δψ является поляризованным. Коллапс δψ приводит к деполяризации мембранного потенциала митохондрий, и часто, но не всегда, наблюдается на ранних стадиях апоптоза, также изменения данного показателя описаны во время процессов некроза (в результате деполяризации мембраны) и процессов остановки клеточного цикла (в результате гиперполяризации мембраны). Несмотря на идущие научные дискуссии, было сделано обобщение, что деполяризация митохондрий является одним из первых событий, происходящих во время апоптоза, и может даже быть предпосылкой для высвобождения цитохрома с.

Таким образом, деполяризация показателя δψ опосредовано может указывать на снижение функционального потенциала мембраны митохондрий, то есть об их деактивации, возможно в итоге приводящей к гибели клеток.

В настоящее время проточная цитометрия стала методом выбора для анализа мембранного потенциала митохондрий δψ в целых клетках. При этом в качестве тестового зонда используют мембранно-проницаемые липофильные катионные флуорохромы которые проникают в клетки, и их флуоресценция является отражением δψ. Одним из предложенных к оценке данного состояния флуорохромов является JC-1 (5,5’,6,6’-тетрахлор-1,1’,3,3’-тетраэтил-бензимидазол карбоцианин йодид), который является агрегатообразующим катионным красителем, чувствительным к δψ.

Спектр излучения флуоресценции JC-1 зависит от его концентрации, которая, в свою очередь, определяется состоянием δψ. JC-1 может существовать в двух различных состояниях, агрегатах или мономерах, каждый из которых имеет разные спектры излучения. JC-1 образует мономеры при низких концентрациях красителя и агрегаты при более высоких концентрациях. Как агрегаты JC-1, так и мономеры проявляют флуоресценцию в зеленом конце спектра, которая измеряется в зеленом канале (FL-1) на проточных цитометрах.

Когда живые клетки инкубируются с JC-1, JC-1 проникает в плазматическую мембрану клетки как мономер. Поглощение JC-1 в митохондрии обусловлено δψ. Далее δψ нормальных, здоровых митохондрий поляризуется и JC-1 быстро поглощается такими митохондриями. Это поглощение увеличивает градиент концентрации JC-1, что приводит к образованию агрегатов JC-1 (известных как J-агрегаты) в митохондриях.

Агрегаты JC-1 демонстрируют красный спектральный сдвиг, приводящий к более высоким уровням излучения красной флуоресценции, которое измеряется в красном канале (FL-2) на большинстве проточных цитометров.

Таким образом, на основании оценки количества JC-1green+ (мономеры) и JC1red+ (агрегаты) клеток можно говорить о состоянии мембраны митохондрий в изучаемом пуле клеток и преобладание JC1red+ (агрегаты) клеток будет косвенно указывать на активацию митохондрий.

Важно, что краситель JC-1 может использоваться как качественная (учитывая сдвиг от зеленого к красному излучению флуоресценции), так и количественная (учитывая только чистую интенсивность флуоресценции) мера мембранного потенциала митохондрий.

Накопление флуоресцентных красителей в митохондриях можно оптически обнаружить с помощью проточной цитометрии, флуоресцентной микроскопии, конфокальной микроскопии и с помощью считывателя флуоресцентных пластин.

Использование определения коэффициента флуоресценции дает исследователям возможность сравнивать измерения мембранного потенциала, а также оценивать процент деполяризации митохондрий, происходящей в патологическом состоянии (например, клеточный стресс, апоптоз и т. Д.).

Учитывая то, что таким образом изучается не столько активация митохондрий, сколько апоптоз, то для исключения вероятности данного процесса параллельно те же самые клетки крови животных изучены на предмет количества BCL-2+ клеток с применением метода многопараметровой проточной цитометрии.

Оценка δψ потенциала митохондрий и количество BCL-2+ клеток изучалось иммунологически с применением методов проточной цитометрии в крови в пределах нескольких популяций цельной крови мышей.

В пределах лейкоцитов - CD45+ клетки, в пределах лимфоцитов (популяция CD45+ Ly6G-) в пределах мoноцитов (популяция Ly6G+Cd45+ клетки), в пределах нейтрофилов (популяция Ly6G+CD45low клеток), а также дополнительно количество BCL-2+ клеток оценено в пределах CD45+CD3+ Т-клеток. Оцениваемые популяции представлены на фиг 1 А, Б.

На фиг. 2 А - показан точечный график расположения клеток оцениваемых популяций образца в пределах лимфоцитов (популяция CD45+ Ly6G-), в пределах мoноцитов (популяция Ly6G+Cd45+ клетки), в пределах нейтрофилов (популяция Ly6G+CD45low клеток).

На фиг. 2 Б видно, что пропорция мономеров (правый нижний квадрант) составляет 68,5%. Пропорция агрегатов (активированные клетки, правый верхний квадрант) - 30,8% в пределах популяции лимфоцитов крови мыши.

На фиг. 2 В видно, что пропорция мономеров (правый нижний квадрант) составляет 92,7%. Пропорция агрегатов (правый верхний квадрант) - 7,3% в пределах нейтрофилов.

На фиг. 2 Г - пропорция мономеров (правый нижний квадрант) - 66,1%. Пропорция агрегатов (правый верхний квадрант) - 33,8% в пределах моноцитов периферической крови мыши.

Пример 2. Оценка кислород-зависимой активации нейтрофилов проводилась методом хемилюминсценции.

Пулированную периферическую кровь (5 контролей и 10 опытных особей) разбавляли рабочим раствором Хэнкса с гепарином в соотношении 1:1 и выделяли мононуклеары посредством центрифугирования при 3000 об/мин 1 час на градиенте плотности фиколл-гиппак (10 мл 10771 г/см3 и 10 мл г/см3 11191 Merc).

Кольцо мононуклеаров аккуратно отбирали, мононуклеары переносили в пробирку и разбавляли раствором Хэнкса с гепарином 1:5, аккуратно ресуспендировали и центрифугировали 10 минут при 3000 об/мин. В полученном образце убирали надосадок, а осадок диспергировали в 2 мл рабочего раствора Хэнкса с гепарином.

Производили подсчет клеток в полученном растворе в камере Горяева в 16 квадратах.

Далее на люминометре LKB WALLAC 1251 Luminometer запускали программу и оценивали люминол-зависимую зимозан-индуцированную хемилюминесценцию в 10 кюветах с контрольными образцами и в 10 кюветах с опытными образцами с общей концентрацией клеток в каждой кювете 1*106 в растворе Хэнкса с добавлением люминола. Исходя из количества заданных циклов по программе, величина пика Imax была достигнута с последующим понижением.

В таблице 1 представлены результаты исследования кислородзависимой активации нейтрофилов методом хемилюминесценции через 3 часа после введения средства.

Таблица 1.

Контроль Imax, mV Опыт Imax, mV
1 0,783 0,544
2 0,824 0,482
3 0,835 0,552
4 0,91 0,77
5 0,888 0,557
6 1,057 0,655
7 1,023 0,512
8 0,83 0,569
9 0,975 0,575
10 0,728 0,6
Среднее 0,8853 0,5816

Судя по полученным данным, видимой разницы между контролем и опытом (животные, забитые через 3 часа после введения препарата) не наблюдается, и можно сделать вывод о том, что спустя 3 часа после внутримышечного введения препарата изменения показателей кислород-зависимого метаболизма нейтрофилов крови не выявлены, а скорее даже несколько подавлены с учетом данных опытной группы (см. фиг. 3). На фиг. 3 по горизонтальной оси указаны номера исследованных кювет, а по вертикальной оси указаны значения максимального показателя хемилюминесценции Imax, mV.

Экспериментальные данные результатов исследования кислород-зависимой активации нейтрофилов методом хемилюминесценции через 24 часа после внутримышечного введения я средства представлены в таблице 2, где показано, что через сутки после достигается значительное достоверное (р=0,01) увеличение максимального показателя хемилюминесценции Imax, отношение среднего значения опытного к контролю составляет 4,655162.

Таблица 2.

Контроль Imax, mV Опыт Imax, mV
1 0,952 5,052
2 0,935 3,183
3 0,991 4,68
4 1,239 6,3
5 0,993 3,881
6 0,958 3,487
7 1,013 4,135
8 0,991 4,921
9 0,849 5,155
10 0,188 5,349
Среднее 0,991222 4,6143 (р=0,01)

Следует отметить, что в 10 -й кювете в контроле явно виден дискордантный (выбивающийся из общих значений) результат, поэтому при оценке среднего результата его не учитывали.

Полученные данные позволяют говорить о существенном повышении кислородозависимого метаболизма нейтрофилов под влиянием испытуемого препарата, что опосредованно можно расценить как активация митохондрий в данной клеточной субпопуляции (см. Фиг. 4). На фиг. 4 по горизонтальной оси указаны номера исследованных кювет, а по вертикальной оси указаны значения показателя Imax, mV.

Результаты исследований кислород-зависимой активации нейтрофилов методом хемилюминесценции через 3 недели после внутримышечного (в/м) введения средства (группа 5, пул из 5 животных) и после двухкратного в/м введения (группа 6, пул из 5 животных) представлены в таблице 3.

Таблица 3.

Контроль Imax, mV Опыт 1 Imax, mV (3 недели 1-кратное введение препарата) Опыт 2 Imax, mV
3 недели+3 часа 2-кратное введение препарата)
1 0,643 1,283 0,662
2 0,642 1,597 0,658
3 0,651 1,543 0,674
4 0,675 1,103 0,688
5 0,641 1,45 0,617
Среднее 0,651 1,395 0,66

Для подтверждения результатов был выполнен дополнительный анализ оставшихся десяти животных (5 из 5 группы и 5 из 6 группы) (см. таблица 4).

Таблица 4.

Контроль, mV Опыт 1, mV (3 недели, 1-кратное введение препарата) Опыт 2, mV ( 3 недели, 2-кратное введение препарата)
1 1,163 2,046 1,593
2 1,043 1,523 1,271
3 1,067 1,76 1,695
4 0,645 1,992 1,139
5 0,64 1,91 0,935
Среднее 0,903 1,846 1,327

Согласно полученным данным, выявлена тенденция к практически 2-кратному повышению активности нейтрофилов у животных, исследования которых проводили через 3 недели после первого введения препарата. У отдельных животных, подвергшихся двукратному введению препарата, также выявлена разница в активации нейтрофилов в сравнении с контролем, но в целом при этом однократное введение препарата было более эффективным в сравнении с двукратным введением.

На фиг. 6 представлено сравнение средних показателей хемилюминесценции во всех анализируемых группах. По горизонтальной оси указано время исследования после инъекции препарата, а по вертикальной оси указаны результаты Imax, mV. На фигуре 6 представлено сравнение средних показателей хемилюминесценции во всех анализируемых группах и видно, что под влиянием заявляемого средства проявляется кислород-зависимая активация нейтрофилов. При этом максимальный эффект выявлен спустя сутки от введения препарата, данный эффект сохранялся в течение трех недель, постепенно снижаясь.

Таким образом, после проведения экспериментов выявлено влияние препарата на δψ митохондрий. Через несколько часов после введения препарата происходит активация нормальных здоровых митохондрий, что проявляется в их поляризации. Данные процессы выявлены на разных сроках от введения препарата и в различных клеточных популяциях. На более ранних сроках наибольший и равномерный эффект проявился на моноцитах, в то время как более длительное воздействие препарата приводило к поляризации мембран в лимфоцитах и у некоторых особей в суммарной популяции моноцитов-нейтрофилов крови. Полученные данные подтверждают возможность активации митохондрий под влиянием заявляемого средства.

Применение иммуномодулирующего средства для внутримышечных инъекций, содержащего активную часть в виде муравьиного альдегида в количестве 0,076-0,078% и добавку в виде изотонического раствора хлорида натрия для инъекций 0,85-0,95%-ной концентрации - остальное, в качестве средства для повышения мембранного потенциала митохондрий и повышения кислородзависимого метаболизма нейтрофилов.



 

Похожие патенты:

Настоящее изобретение относится к соединению, соответствующему общей формуле I , где R1 представляет собой метил или этил, n равно 1 или 2, R2 выбран из группы, состоящей из водорода, циано, –SO2Ra, –SO2NRbRc, –C(O)Rb, фенила и 5– и 6–членного гетероарила, где указанный фенил, 5– и 6–членный гетероарил содержит 1-3 гетероатома, выбранных из S и N, и где указанный 5– и 6–членный гетероарил необязательно замещен одним или более заместителями, независимо выбранными из R3, R3 представляет собой группу, состоящую из циано, галогена, (C1–C4)алкила, гидрокси(C1–C4)алкила, (C1–C4)алкокси, –SO2Ra и –SO2NRbRc, Ra выбран из (C1–C4)алкила и галоген(C1–C4)алкила, Rb и Rc, каждый независимо, выбраны из водорода, (C1–C4)алкила, циано(C1–C4)алкила и циано(C3–С6)циклоалкила, или его фармацевтически приемлемой соли.

Изобретение относится к соединению формулы (I) или его фармацевтически приемлемой соли, сложному эфиру, гидрату, сольвату или стереоизомеру. В формуле (I): A1 представляет N или CR8, каждый из А2, А3, А4 и А5 независимо представляет N или CR9, причем не более чем один из A2, А3, А4 и A5 представляет N, каждый из R1 и R2 независимо представляет водород или С1-12алкил, возможно монозамещенный -NRaRb, С1-12алкилом, 3-10-членным насыщенным карбоциклилом или 3-6-членным насыщенным гетероциклилом, содержащим один гетероатом, выбранный из N и О, где каждый из 3-10-членного насыщенного карбоциклила и 3-6-членного насыщенного гетероциклила может быть не замещен или моно- или полизамещен С1-12алкилом, где каждый из Ra и Rb независимо выбран из водорода или С1-12алкила, который может быть возможно монозамещен или независимо полизамещен дейтерием или тритием, или Ra и Rb, взятые вместе с атомом азота, с которым они связаны, образуют 3-10-членный насыщенный гетероциклил, возможно монозамещенный С1-12алкилом, или R1 и R2, взятые вместе с атомом азота, с которым они связаны, образуют 3-12-членное моноциклическое или полициклическое кольцо, возможно содержащее один дополнительный гетероатом, выбранный из N и О, которое может быть возможно монозамещено или независимо полизамещено галогеном, С1-12алкилом, -NRaRb или группой -С1-12алкил-NRaRb, R3 представляет Н, С1-12алкил или -C1-12алкил-NRaRb, каждый из R4 и R5 независимо представляет C1-6алкил, возможно монозамещенный или независимо полизамещенный одним или более чем одним дейтерием, тритием или галогеном, или R4 и R5, взятые вместе с атомом углерода, с которым они связаны, образуют 3-10-членное моноциклическое кольцо, возможно содержащее один гетероатом О, которое может быть возможно монозамещено или независимо полизамещено одним или более чем одним дейтерием или тритием, R6 представляет водород, R7 представляет С1-12алкил, который может быть возможно моно- или полизамещен дейтерием или тритием, R8 представляет водород, дейтерий, тритий, галоген, циано, С1-12алкил, C1-12алкоксил, который может быть возможно монозамещен или независимо полизамещен одним или более чем одним дейтерием, тритием или галогеном, R9 отсутствует или представляет водород, дейтерий или тритий, n равно 0, 1, 2, 3 или 4, каждый R независимо представляет галоген, С1-12алкил, 3-10-членный насыщенный карбоциклил или 3-6-членный насыщенный или ненасыщенный гетероциклил, содержащий один гетероатом N, при этом указанный гетероциклил конденсирован с кольцом, с которым он связан, которые могут быть возможно монозамещены или независимо полизамещены одним или более чем одним дейтерием, тритием, галогеном или С1-12алкилом.

Изобретение относится к фармацевтической промышленности и представляет собой лекарственное средство в виде суппозиторий для ректального и/или вагинального применения, обладающее иммуномоделирующим, антиоксидантным, регенерирующим, противовирусным, антибактериальным, противогрибковым, нейропротекторным, обезболивающим, противоопухолевым и противовоспалительным действиями, содержащее стабильный высокоочищенный лиофилизированный аминодигидрофталазиндион натрия, вспомогательные вещества, а также дополнительно может содержать по крайней мере одно действующее вещество из ряда антиоксидантов и/или местноанестезирующих веществ.

Изобретение относится к гетероциклическому соединению формулы (1) или его фармацевтически приемлемой соли, где X представляет собой метилен; R1 и R2 независимо представляют собой замещенную или незамещенную алкильную группу, содержащую от 1 до 6 атомов углерода, при условии, что когда алкильная группа является замещенной, она замещена гидрокси-группой; R3 представляет собой алкильную группу, содержащую от 1 до 6 атомов углерода; R4 представляет собой атом водорода, или алкокси-группу, содержащую от 1 до 6 атомов углерода; Y1 представляет собой простую связь или -(CR9R10)p-, где R9 и R10 независимо представляют собой атом водорода; Y2 представляет собой простую связь или -C(O)-; L представляет собой незамещенный линейный алкилен, содержащий от 2 до 6 атомов углерода; R5 и R6 независимо представляют собой атом водорода или незамещенную алкильную группу, содержащую от 1 до 6 атомов углерода, или R5 и R6 объединены с атомом азота, с которым они соединяются, с образованием 6-членного азотсодержащего насыщенного гетероцикла; m равен 1; p представляет собой целое число 1 и представляет собой двойную связь.

Изобретение относится к соединению формулы III или его фармацевтически приемлемой соли, которые могут найти применение для лечения нейродегенеративных заболеваний. В формуле III R4 выбран из H и C1-6 алкила и R3 представляет собой: (а) Н, ОН, NH2, С2-6 алкенил, С2-6 алкинил, С3-6 циклоалкил или 3-6-членное гетероциклильное кольцо, содержащее один гетероатом, выбранный из О; или (b) C1-6 алкил, необязательно замещенный 1, 2 или 3 заместителями, каждый из которых независимо выбран из ОН, галогена, NH2, -SO2H, -SO2(C1-6 алкил), CN или фенильной группы, необязательно замещенной 1, 2 или 3 заместителями, каждый из которых независимо выбран из группы, состоящей из ОН; или (c) -О-C1-6 алкил; или (d) фенильную группу, необязательно замещенную 1, 2 или 3 заместителями, каждый из которых независимо выбран из группы, состоящей из ОН, NO2 и галогена.

Изобретение относится к биотехнологии в животноводстве, а именно к способу получения биопрепарата для коррекции метаболизма у поросят-сосунов. Способ получения биопрепарата для коррекции метаболизма у поросят-сосунов, включающий введение бактериального концентрата суточной культуры пробиотических микроорганизмов в питательную среду, при этом в качестве культуры пробиотических микроорганизмов используют целлобактерин, содержащий пробиотические микроорганизмы Clostridium thermocellulociticus, Ruminococcus olbus, Clostridium lochheadii, а в качестве питательной среды стерилизованную свекловичную мелассу, причем для приготовления питательной среды взвешивают 15,0 г мелассы свекловичной, доводят объем до 100,0 мл дистиллированной водой, стерилизуют на водяной бане в течение 35-45 минут при температуре 85-90°С, фильтруют, добавляют 1 мл бактериального концентрата суточной культуры пробиотических микроорганизмов, которую предварительно стандартизируют до 1×106 КОЕ/см3, выдерживают 8 суток в термостате при температуре 37°С и пастеризуют при температуре от 90°С до 22°С в течение 35 минут.

Группа изобретений относится к биотехнологии. Раскрыты антитело или его антигенсвязывающий фрагмент, связывающиеся с человеческим IL-4R, молекула нуклеиновой кислоты, кодирующая указанное антитело или его антигенсвязывающий фрагмент, фармацевтическая композиция для предупреждения или лечения заболевания, опосредованного IL-4R, содержащая эффективное количество указанного антитела и фармацевтически приемлемый носитель, и способ предупреждения или лечения заболевания, включающий введение субъекту, нуждающемуся в этом, антитела.

Настоящее изобретение относится к соединениям, которые модулируют функцию родственного ретиноидным рецепторам орфанного рецептора RORc (RORy), а именно к конкретным соединениям, как они представлены в формуле изобретения. Также предложены фармацевтическая композиция и применение соединений для приготовления лекарственного средства и лечения или профилактики заболевания, опосредованного рецептором RORc.

Изобретение относится к слитому белку, содержащему аминокислотную последовательность согласно SEQ ID NO:16, где слитый белок представляет собой иммуномодулирующее средство, которое повышает или усиливает иммунную функцию путем ингибирования связывания лигандов с LAIR-1, таким образом, снижая экспрессию LAIR-1, связывание лиганда, перекрестное сшивание, передачу сигнала или их комбинацию.

Группа изобретений относится к области фармацевтики, а именно к гуминовому средству, обладающему иммуномодулирующей активностью, и его применению в качестве иммуномодулятора. Гуминовое средство, обладающее иммуномодулирующей активностью, получают из леонардита, лигнина, угля, торфа, сапропели, методом ультразвукового диспергирования предварительно измельченного сырья в смеси с водой при определенной температуре и определенном давлении, после которого раствор охлаждают до комнатной температуры и разбавляют водой до содержания гуминовых веществ, составляющего от 1 до 20 мас.%, при этом гуминовые вещества включают гуминовые и фульво-кислоты и их соли, а также гидрохинон в количестве, не превышающем 3 мас.% от массы гуминовых веществ.

Изобретение относится к области фармацевтики, а именно к применению водной композиции для стимулирования врожденного иммунитета у субъекта с целью предотвращения заболеваний, спровоцированных инвазией патогенного агента через кожу, глаз и слизистую оболочку. Применяемая водная композиция включает фильтрованную морскую воду и фукан из Ascophyllum nodosum, имеющий молекулярную массу от 2 до 21 кДа, в определенном соотношении.
Наверх