Способ бесконтактного определения диэлектрической проницаемости жидких диэлектриков в диапазоне 22-40 ггц

Изобретение относится к контрольно-измерительной технике и может быть использовано для создания устройств бесконтактного измерения диэлектрической проницаемости жидкостей. В частности, способ может быть применён для контроля качества нефти и ее фракций. Суть изобретения заключается в вычислении диэлектрической проницаемости с учетом положений минимумов интерференционной зависимости коэффициента обратного отражения от ширины слоя исследуемой жидкости. Техническим результатом при реализации заявленного способа выступает значительное повышение точности определения диэлектрической проницаемости жидких диэлектриков. 4 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для создания устройств бесконтактного измерения диэлектрической проницаемости жидкостей. В частности, способ может быть применён для контроля качества некоторых жидких нефтепродуктов.

Суть изобретения заключается в вычислении диэлектрической проницаемости с учетом положений минимумов интерференционной зависимости коэффициента обратного отражения от ширины слоя исследуемой жидкости.

Известны способы бесконтактного определения диэлектрической проницаемости жидкостей, заключающийся в том, что образцы облучают электромагнитным полем и измеряют параметры искаженного сигнала [патент РФ №2194270, №2563581, №2234075].

Прототипом данной заявки является способ бесконтактного определения диэлектрической проницаемости жидких диэлектриков в Ка-диапазоне, в котором искомое значение определялось положением максимумов и минимумов интерференционной зависимости коэффициента обратного отражения от ширины слоя исследуемой жидкости [патент РФ №2728250].

Соответственно недостатком этого способа является неточность определения положений максимумов в интерференционной картине, что соответственно приводило к погрешностям определения диэлектрической проницаемости.

Предлагаемый способ позволяет значительно точнее определять диэлектрическую проницаемость жидких диэлектриков.

Технический результат достигается тем, что исследуемую жидкость облучают по нормали плоской электромагнитной волной, в которой опускается металлическая пластина. Определяется зависимость интенсивности отраженного поля от ширины слоя исследуемой жидкости, отличающийся тем, что искомый параметр вычисляется по формуле, полученной из условий интерференции на диэлектрическом слое: , - скорость света в вакууме, - частота облучающего поля, и - положение ближайших минимумов интенсивности поля.

На фиг. 1. представлена реализация способа. Рупорные антенны излучают (1) и принимают (2) линейно поляризованную электромагнитную волну по нормали к поверхности жидкости (3), а поворотом направляющих штырей (4 и 5) обеспечивается положение металлической пластины (6)- толщина зондируемого слоя. Поворот направляющих на угол при шаге резьбы будет соответствовать поднятию или опусканию пластины на .

На фиг. 2 приведена измеренная зависимость интенсивности отраженного поля от глубины погружения металлической пластины в растительное масло при .

На фиг. 3 приведена частотная зависимость средних значений диэлектрической проницаемости исследуемой жидкости. Данные 1 получены с помощью способа из патента РФ №2728250, а данные 2 вычислены предложенным способом. Приставленные кривые содержат 3200 усредненных значений точек.

На фиг. 4 приведена зависимость среднеквадратичного отклонения диэлектрической проницаемости исследуемой жидкости от частоты. Данные 1 получены с помощью способа из патента РФ №2728250, а данные 2 вычислены предложенным способом. Количество реализаций варьировалось от 7 до 25.

Способ измерения диэлектрической проницаемости жидких диэлектриков заключающийся в том, что исследуемую среду облучают по нормали плоской электромагнитной волной, в которой опускается плоская металлическая пластина, определяется зависимость интенсивности отраженного поля от ширины слоя исследуемой жидкости, отличающийся тем, что искомый параметр вычисляется по формуле, полученной из условий возникновения минимумов при интерференции на диэлектрическом слое, ограниченного воздухом и металлом: , - скорость света в вакууме, - частота облучающего поля, и - положение ближайших минимумов интенсивности поля.



 

Похожие патенты:

Изобретение предназначено для высокоточного измерения резонансной частоты и добротности резонаторов, входящих в состав различных резонансных датчиков, например, влажности, концентрации растворов и уровня различных сред. Техническим результатом изобретения является повышение точности измерения резонансной частоты.

Изобретение предназначено для высокоточного измерения резонансной частоты и добротности резонаторов, входящих в состав различных резонансных датчиков, например, влажности, концентрации растворов и уровня различных сред. Техническим результатом изобретения является повышение точности измерения резонансной частоты.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным, чувствительными элементами в виде участков этого отрезка коаксиальной длинной линии, заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью.

Использование: для измерения электромагнитного отклика от плоскопараллельных пластин. Сущность изобретения заключается в том, что устройство для измерения электромагнитного отклика от плоскопараллельных пластин содержит блок генерации и индикации СВЧ сигнала, два линзовых волновода, образованных плоскими фазоинверсными дифракционными оптическими элементами соответствующего диапазона L1, L3 и L2, L4, излучающий рупор, расположенный в передней фокальной плоскости линзы L1, и принимающий рупор, расположенный в задней фокальной плоскости линзы L2, диафрагму, выполненную из радиопоглощающего материала, фокусирующую линзу L3, расположенную в передней фокальной плоскости L1, и фокусирующую линзу L4, расположенную в передней фокальной плоскости линзы L2, при этом диафрагма расположена в заднем фокусе относительно линзы L3 и в переднем фокусе относительно линзы L4, отличающееся тем, что дифракционные оптические элементы L3 и L4 состоят из подложки, прозрачной для используемого излучения, на поверхности которой размещена фазоинверсная структура с границами зон Френеля, подложку выполняют в форме усеченного конуса с высотой конуса, примерно равной фокусному расстоянию дифракционного оптического элемента, с отношением радиусов нижнего и верхнего оснований усеченного конуса, примерно равным 2, и с показателем преломления материала не менее показателя преломления материала фазоинверсной структуры, направленной меньшим основанием в сторону области фокусировки излучения, а фокусное расстояние выбирают не более длины волны используемого излучения и облучение дифракционного оптического элемента осуществляют со стороны фазоинверсной структуры.

Изобретение относится к измерительной технике, в частности к устройствам для измерения физических величин емкостными датчиками, и может быть использовано во встраиваемых вычислительных системах контроля и управления. Микроконтроллерное измерительное устройство емкости для встраиваемых вычислительных систем содержит: N+1 резисторов; емкостный датчик; образцовый конденсатор; микроконтроллер; компьютер.

Изобретение относится к СВЧ-технике и предназначено для измерения селективных свойств высокодобротных миниатюрных открытых диэлектрических резонаторов. Технический результат: упрощение процесса настройки измерительного устройства с повышенной точностью измерения собственной добротности открытого диэлектрического резонатора.

Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости многослойных материалов. Сущность: способ включает измерение толщин слоев образца, настройку резонатора в резонанс без образца, измерение длины резонатора на фиксированной частоте, помещение в резонатор образца, уложенного одной стороной на подвижный поршень, настройку резонатора в резонанс с образцом и измерение длины резонатора с образцом на фиксированной частоте, расчет величины изменения длины резонатора пустого и с образцом, уложенным одной стороной на подвижный поршень.

Использование: для дистанционного определения состояния снежно-ледяного покрова. Сущность изобретения заключается в том, что дополнительно определяют поляризационные отношения Prk нормированных сечений обратного рассеяния и относительные диэлектрические проницаемости εrk слоев снежно-ледяного покрова, где k=2, 3, …, n - номер слоя снежно-ледяного покрова, сравнивают полученные значения относительных диэлектрических проницаемостей слоев с заданными значениями εvrΔ и определяют состояние снежно-ледяного покрова по условию εrk=εvrΔ: «снежный покров», «фирн», «ледяной покров» либо «вода».

Изобретение относится к области определения характеристик подстилающих поверхностей для дистанционной идентификации состояния снежно-ледяного покрова, в частности к системам обеспечения безопасности транспортировки (доставки) грузов и объектов по водоему со снежно-ледяным покровом. Технический результат: повышение вероятности идентификации составляющих элементов структуры снежно-ледяного покрова, повышение уровня безопасности транспортировки грузов по водоему со снежно-ледяным покровом.

Использование: для дистанционной оценки состояния снежно-ледяного покрова. Сущность изобретения заключается в том, что дополнительно последовательно определяют зависимость коэффициентов отражения Френеля Rvi,i+1, i,i+1 - границ раздела слоев контролируемого участка от угла падения в пределах от 40 до 90°, определяют углы Брюстера θBi,i+1, i,i+1 - границ раздела слоев, определяют относительные диэлектрические проницаемости слоев εri+1 снежно-ледяного покрова по формуле εri+1=(tgθBi,i+1], сравнивают полученные значения относительных диэлектрических проницаемостей слоев с заданными значениями εvrΔ и оценивают состояние снежно-ледяного покрова по условию εri+1=εvrΔ: «снежный покров», «фирн», «ледяной покров» либо «вода».
Наверх