Способ получения высокодисперсных тугоплавких карбидов переходных металлов



Способ получения высокодисперсных тугоплавких карбидов переходных металлов
C04B35/5607 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2766878:

Матвеев Алексей Евгеньевич (RU)

Изобретение относится к области порошковой металлургии тугоплавких соединений, в частности к способу получения порошков карбидов тугоплавких переходных металлов (Ti, Zr, Hf, Nb, Та и V), которые используются в качестве лигатур, компонентов сплавов, мишеней для плазменного напыления, самостоятельных керамических материалов и др. Технический результат состоит в увеличении качества целевого продукта - высокодисперсного тугоплавкого карбида переходного металла IV или V групп таблицы Менделеева (Ti, Zr, Hf, Nb, Та, V) за счет снижения в нем примесей углерода и кислорода, а также в снижении энергозатрат при осуществлении способа за счет снижения времени помола спека тугоплавких карбидов переходных металлов. Способ получения высокодисперсных тугоплавких карбидов переходных металлов включает приготовление экзотермической смеси, в качестве которой используют смесь пластиковых отходов типа PET и порошок переходного металла IV или V группы таблицы Менделеева; сжигание экзотермической смеси с получением высокопористого спека тугоплавкого карбида переходного металла в режиме самораспространяющегося высокотемпературного синтеза в реакторе замкнутого типа с газораспределительной системой с последующим измельчением спека тугоплавкого карбида переходного металла. 5 з.п. ф-лы, 1 табл., 21 пр.

 

Изобретение относится к области порошковой металлургии тугоплавких соединений, в частности к способу получения порошков карбидов тугоплавких переходных металлов (Ti, Zr, Hf, Nb, Та и V), которые используются в качестве лигатур, компонентов сплавов, мишеней для плазменного напыления, самостоятельных керамических материалов и др.

Известен способ получения порошков карбидов переходных металлов, включающий смешивание в качестве реагентов оксидов переходных металлов с углеродным порошком и нагрев в реакционной камере под давлением инертного газа до температуры 1200-2000°С, поддерживая давление, достаточное для предотвращения значительных потерь оксидов или углерода из реагента. В качестве побочного продукта в данном способе образуется монооксид углерода [Патент US 5338523, 1994 г.]. Известный способ имеет ряд недостатков. Одним из недостатков является длительность процесса синтеза в высокотемпературной печи, что требует потребление большого количества электроэнергии необходимой для поддержания высокой температуры в печи. Другим недостатком является низкая однородность смеси исходных реагентов, в результате чего в смесители могут наблюдаться участки агломерированной сажи, что в свою очередь приводит к снижению поверхности реагирования и, как следствие, к снижению полноты протекания реакции.

Основным методом получения карбида титана в производственных условиях является карботермический метод (печной способ). Процесс восстановления диоксида титана проходит по реакции: TiO2+3C=TiC+2CO. Смесь диоксида титана и сажи спрессовывается в брикеты и выдерживается в атмосфере аргона или водорода при температуре порядка 2000°С. Полученный продукт подвергается длительному (десятку часов) размолу. Недостатком способа является малая скорость химических превращений, высокая температура синтеза, необходимость тщательного перемешивания исходных реагентов и необходимость длительного размола полученного компактного TiC [Кипарисов С.С, Левинский Ю.В., Петров А.П. Карбид титана: получение, свойства, применение. - М.: Металлургия, 1987. - 216 с.].

Известны способы, основанные на самораспространяющемся высокотемпературном синтезе карбида титана [Патент RU 2038296, 1995 г., Патент RU 1570225, 2003 г.]. Карбид титана получают из элементарного порошка титана и углерода, смешанных в определенном соотношении до образования однородной смеси. Смесь запрессовывают в образцы для более полного контакта между реагентами, после чего быстро нагревают до температуры воспламенения. Известные способы обладают преимуществами по сравнению с традиционным печным способом. К таким преимуществам относятся: низкая потребность в электроэнергии для осуществления синтеза и большая скорость осуществления процесса синтеза. Недостатком данных способов является то, что прямая реакция синтеза титана и углерода приводит к сильной рекристаллизации, агломерации и спеканию частиц карбида титана, что усложняет процессы измельчения продуктов синтеза в порошки и требует длительной (десятки часов) измельчения в планетарной мельнице. Стоит отметить, что для получения качественного продукта по известным способам необходимо использовать мелкодисперсные порошки углерода и титана, что повышает себестоимость конечного продукта. Кроме того, представленный способ требует тщательного перемешивания исходных реагентов и даже в этом случае полной однородность смеси не будет достигнуто, что может повлиять на полноту реагирования элементарного порошка титана и углерода.

По технической сущности наиболее близким к предлагаемому техническому решению является способ получения порошков тугоплавких соединений, в том числе тугоплавких карбидов Ti, Zr, Hf, Nb и V [Патент RU 2161548, 2001 г.]. Способ, взятый за прототип, включает приготовление экзотермической смеси порошков переходного металла и неметалла при соотношении мольных частей в соответствии со стехиометрическим составом синтезируемых дисперсных фаз, сжигание экзотермической смеси в режиме самораспространяющегося высокотемпературного синтеза при направленной фильтрации примесных газов. При этом экзотермическую смесь предварительно гранулируют, синтез ведут в полузакрытом реакторе, в качестве неметалла используют углерод. Предлагаемый способ синтеза порошков тугоплавких соединений в сравнении с традиционным СВС в замкнутых реакторах, позволяет снизить трудозатраты относительно печного способа (и, соответственно, энергозатраты) за счет снижения времени на измельчение спеченных продуктов синтеза в порошок. Недостатком известного способа является то, что использование чистого углерода в исходной шихте приводит к неоднородному распределению частиц исходных компонентов даже при длительном перемешивании смеси. Неоднородность смеси приводит к снижению поверхности реагирования между компонентами и ухудшению реакции синтеза, что приводит к загрязнению целевого продукта его углеродом. Кроме того, низкое содержание примесных газов в смеси (менее 1%) может быть недостаточным для препятствия процессам рекристаллизации и спекания частиц полученного продукта.

Также движение потока примесных газов параллельно волне горения приводит к повышению температуры, что повышает скорость рекристаллизации и спекания частиц, а как следствие приводит к увеличению времени помола спеченных продуктов синтеза в порошок.

Задачей настоящего изобретения является разработка способа производства высокодисперсных тугоплавких карбидов переходных металлов IV или V групп таблицы Менделеева (Ti, Zr, Hf, Nb, Та, V) с низкими эксплуатационными затратами из порошков этих переходных металлов и пластиковых отходов типа PET (полиэтилентерефталата), с возможностью получения высокого качества целевого продукта за счет снижения примесей углерода и кислорода.

Технический результат состоит в увеличении качества целевого продукта -высокодисперсного тугоплавкого карбида переходного металла IV или V групп таблицы Менделеева (Ti, Zr, Hf, Nb, Та, V) за счет снижения в нем примесей углерода и кислорода, а также в снижении энергозатрат при осуществлении способа за счет снижения времени помола спека тугоплавких карбидов переходных металлов.

Технический результат достигается тем, что способ получения высокодисперсных тугоплавких карбидов переходных металлов включает приготовление экзотермической смеси, в качестве которой используют смесь пластиковых отходов типа PET и порошок переходного металла IV или V группы таблицы Менделеева; сжигание экзотермической смеси с получением высокопористого спека тугоплавкого карбида переходного металла в режиме самораспространяющегося высокотемпературного синтеза в реакторе замкнутого типа с газораспределительной системой с последующим измельчением спека тугоплавкого карбида переходного металла.

Приготовление экзотермической смеси включает плавление пластиковых отходов типа PET и равномерное смешивание с порошком переходного металла IV или V группы таблицы Менделеева с последующим гранулированием.

В качестве порошка переходного металла IV или V группы таблицы Менделеева используют порошок Ti или Zr, или Та, или Hf, или Nb, или V с дисперсностью до 500 мкм.

В экзотермической смеси пластиковые отходы типа PET и порошок Та или Hf используют в соотношении 6-10:94-90 масс. %, соответственно, а пластиковые отходы типа PET и порошок Ti или Zr или Nb или V используют в соотношении 10-45:90-55 масс. %, соответственно.

Сжигание экзотермической смеси осуществляют в реакторе в инертной среде или в атмосфере воздуха или в вакууме.

Измельчение спека тугоплавкого карбида переходного металла осуществляют в шаровой мельнице до получения высокодисперсного порошка фракцией от 0,01 до 15 мкм.

Экспериментальные данные показали, что при содержании пластика PET в экзотермической смеси в диапазоне от 6 масс. % до 10 масс. % при получении карбидов Hf, Та и от 10 масс. % до 45 масс. % при получении карбидов Ti, Zr, Nb, V является оптимальным для образования карбида металлов.

При содержании пластика PET в экзотермической смеси в диапазоне от 45 масс. % до 50 масс. % при получении карбидов Ti или Zr или Nb или V происходит снижение температуры реакции и на поверхности продуктов синтеза осаждается лишний аморфный углерод не вступивший в реакцию.

Увеличение пластиковых отходов типа PET в экзотермической смеси больше 10 масс. % при получении карбидов Hf или Та и больше 50 масс. % при получении карбидов Ti или Zr или Nb или V или использование порошков переходных металлов IV или V группы таблицы Менделеева дисперсностью больше 500 мкм не позволяет инициировать процессы синтеза тугоплавких карбидов переходных металлов путем высокотемпературных экзотермических реакции в режиме горения.

Кроме того, экспериментальные данные показали, что полная замена пластиковых отходов типа PET на отходы пластиков другого типа (РР, PS, PEHD/LD и др.) не приводит к инициированию высокотемпературных экзотермических реакций компонентов пластиковых отходов и порошков металлов без подвода дополнительных источников тепла.

Снижение примесей углерода в целевом продукте до 0,1-0,2 масс. % против 0,4 масс. % в прототипе достигается за счет равномерного обволакивания поверхности частиц порошка тугоплавкого переходного металла: Ti, Zr, Hf, Nb, Та и V расплавом отходов пластика типа PET, что приводит к повышению гомогенности смеси и поверхности реагирования, что в свою очередь, приводит к повышению полноты реакции.

Гранулирование экзотермической смеси приводит к ее более равномерному распределению в реакторе и, как следствие, к более полному протеканию реакции.

Снижение времени помола тугоплавкого карбида до 1 часа до дисперсности 0,01-15 мкм порошка тугоплавкого карбида переходного металла в предлагаемом способе против 5 часов помола до дисперсности <45 мкм в прототипе достигается за счет более свободного и интенсивного выхода газофазных побочных продуктов синтеза (водорода, углекислого газа и др.) из высокопористого спека тугоплавкого карбида переходного металла, препятствующему процессу спекания и приводящему к замедлению процессов рекристаллизации частиц благодаря отводу тепла из зоны горения.

Кроме того, побочные продукты (H2, СО2, С) вступают в реакцию, образуя горючий газ, который может быть использован в качестве топлива для печей, водонагревателей, автомобилей, турбин и др.

Снижение содержания кислорода в целевом продукте до 0,2-0,3 масс. % против 0,4 масс. % в прототипе синтезе достигается за счет отвода кислорода углеродом в виде СО2.

За счет того, что пластиковые отходы типа PET и порошки тугоплавких переходных металлов способны давать высокую экзотермическую реакцию сжигание экзотермической смеси происходит без подвода дополнительных источников тепла.

Качество и выход полученного целевого продукта - высокодисперсного порошка карбида переходного металла (Ti, Zr, Hf, Nb, Та, V) оценивалось с помощью рентгенофазового и энергодисперсионного анализа.

Примеры конкретного выполнения способа:

Пример 1. В качестве исходных компонентов экзотермической смеси используют пластиковые отходы типа PET и порошок переходного металла - порошок титана (Ti) дисперсностью не более 500 мкм, которые берут в соотношении 30 масс. % и 70 масс. %, соответственно. Пластиковые отходы PET без отделения крышек, этикеток и других компонентов иного состава, а также сортировки по цветам измельчают до хлопьев фракции предпочтительно не более 2 см. Экзотермическую смесь нагревают до температуры плавления пластика (150-250°С) и перемешивают до образования однородной смеси. Полученную смесь гранулируют (размер гранул предпочтительно не более 500 мкм) с помощью протирания смеси через сито или специального экструдера. Полученные гранулы помещают в реактор замкнутого типа с газораспределительной системой. Процесс сжигания исходной экзотермической смеси осуществляют в режиме экзотермических высокотемпературных реакций исходных компонентов экзотермической смеси в режиме горения в атмосфере инертного газа аргона, который закачивается в реактор до давления 2 атм. без подведения дополнительных источников тепла, предварительно инициируя реакцию синтеза путем кратковременного нагрева верхней или нижней части находящейся в реакторе исходной экзотермической смеси молибденовой спиралью до температуры, достаточной для инициирования реакции синтеза. Полученный в результате синтеза спек целевого продукта измельчают в шаровой мельнице в течение 1 часа до получения высокодисперсного порошка фракцией от 0,01 до 15 мкм. Газофазные побочные продукты синтеза (водород, углекислый газ и др.) отводят при помощи газораспределительной системы в баллоны для дальнейшей реализации или переработки в углеводородные продукты. Характеристика получаемого тугоплавкого карбида Ti приведена в таблице.

Пример 2. В качестве исходных компонентов экзотермической смеси используют пластиковые отходы типа PET и порошок переходного металла - порошок титана (Ti) дисперсностью не более 500 мкм. Способ осуществляют подобно примеру 1, но процесс сжигания осуществляют в режиме экзотермических высокотемпературных реакцией экзотермической смеси в режиме горения в вакууме под давлением минус 1 атм при соотношении пластиковых отходов типа PET и порошка титана в экзотермической смеси 10 масс. % и 90 масс. %, соответственно. Характеристика получаемого тугоплавкого карбида Ti приведена в таблице.

Пример 3. В качестве исходных компонентов экзотермической смеси используют пластиковые отходы типа PET и порошок переходного металла - порошок титана (Ti) дисперсностью не более 500 мкм. Способ осуществляют подобно примеру 1, но процесс сжигания осуществляют в режиме экзотермических высокотемпературных реакцией экзотермической смеси в режиме горения в воздушной среде при атмосферном давлении при соотношении пластиковых отходов типа PET и порошка титана в экзотермической смеси 45 масс. % и 55 масс. %, соответственно. Характеристика получаемого тугоплавкого карбида Ti приведена в таблице.

Кроме порошка карбида титана предлагаемым способом получаются и другие тугоплавких карбиды переходных металлов: Zr, Nb, Hf, Та и V. Порядок синтеза аналогичен описанному в примере 1, а условия осуществления способа и характеристика получаемого тугоплавкого карбида приведены в таблице.

Предложенный способ позволяет получать с низкими эксплуатационными затратами высокого качества высокодисперсный тугоплавкий карбид переходного металла при использовании отходов пластика типа PET без дополнительного подведения тепла.

Также преимуществом предложенного способа является то, что он является экономически выгодным, поскольку по сравнению с прототипом использование пластиковых отходов типа PET в экзотермической смеси снижает себестоимость конечного продукта на 9-15%. Кроме того, использование пластиковых отходов в предлагаемом способе позволяет утилизировать пластиковые отходы, облегчая нагрузку на мусорные полигоны, что повышает экологичность представленного способа.

1. Способ получения высокодисперсных тугоплавких карбидов переходных металлов, включающий приготовление экзотермической смеси и сжигание экзотермической смеси с получением спека тугоплавкого карбида переходного металла в режиме самораспространяющегося высокотемпературного синтеза, отличающийся тем, что в качестве экзотермической смеси используют смесь пластиковых отходов типа PET - полиэтилентерефталата и порошок переходного металла IV или V группы таблицы Менделеева, сжигание экзотермической смеси осуществляют в реакторе замкнутого типа с газораспределительной системой с последующим измельчением спека тугоплавкого карбида переходного металла.

2. Способ по п. 1, отличающийся тем, что приготовление экзотермической смеси включает плавление пластиковых отходов типа PET и равномерное смешивание с порошком переходного металла IV или V группы таблицы Менделеева с последующим гранулированием.

3. Способ по п. 2, отличающийся тем, что в экзотермической смеси в качестве порошка переходного металла IV или V группы таблицы Менделеева используют порошок Ti или Zr, или Та, или Hf, или Nb, или V с дисперсностью до 500 мкм.

4. Способ по п. 3, отличающийся тем, что в экзотермической смеси пластиковые отходы типа PET и порошок Та или Hf используют в соотношении 6-10:94-90 масс. %, соответственно, а пластиковые отходы типа PET и порошок Ti или Zr, или Nb, или V используют в соотношении 10-45:90-55 масс. %, соответственно.

5. Способ по п. 4, отличающийся тем, что сжигание экзотермической смеси осуществляют в реакторе в инертной среде или в атмосфере воздуха или в вакууме.

6. Способ по п. 5, отличающийся тем, что измельчение спека тугоплавкого карбида переходного металла осуществляют в шаровой мельнице до получения высокодисперсного порошка фракцией от 0,01 до 15 мкм.



 

Похожие патенты:
Изобретение относится к технологии изготовления пьезокерамических элементов, на основе сегнетожёстких материалов системы цирконата-титаната свинца (ЦТС), устойчивых к внешним воздействиям и обладающих высокой температурной стабильностью параметров, и может быть использовано в различных устройствах, предназначенных для работы в силовых режимах, в том числе предназначенных для экстремальных условий (акселерометры, пьезодвигатели, пьезотрансформаторы).
Изобретение относится к сырьевому материалу для получения огнеупора, к применению этого сырьевого материала, а также к огнеупору, содержащему подобный сырьевой материал. Сырьевой материал для получения огнеупора, имеющий химический состав, согласно которому присутствуют следующие оксиды в следующих количествах, мас.%: Al2O3 от 83 до 93, MgO от 4 до 9, СаО от 2 до 10, имеет открытую пористость в пределах от 30 до 60 об.%.

Изобретение относится к изготовлению искусственных плавленых слюдяных материалов, в частности к технологии каменного литья, и может быть использовано при синтезе новых видов каменного литья в области металлургической, горно-обогатительной, огнеупорной и строительной промышленности. Согласно изобретению в способе получения слюдокристаллического материала на основе фторфлогопита в шихту на основе оксидов кремния, алюминия и магния и кремнефтористого калия дополнительно вводят борную кислоту при следующем соотношении компонентов, мас.%: оксид алюминия 13,0-14,0, оксид кремния 27,0-28,0, оксид магния 18,0-19,0, калий кремнефтористый 17,0-18,0, борная кислота 22,0-23,0.

Изобретение относится к получению магнитных оксидных материалов методом твердофазного синтеза и может быть использовано в СВЧ-устройствах и электронике. Для получения в виде спеченного порошка замещенного титаном гексаферрита бария BaFe12-xTixO19, где х=0,25÷2,0, порошки оксидов Fe2O3 и TiO2 и карбоната ВаСО3, взятые в стехиометрическом соотношении, подвергают гомогенизирующему помолу в сухом виде в течение 3 ч.
Группа изобретений относится к технологии производства кордиеритовых изделий (субстратов), которые могут быть использованы в качестве носителя каталитического нейтрализатора систем снижения токсичности отработанных газов двигателей внутреннего сгорания автомобилей (ДВС). Материал получен из смеси магнийсодержащего компонента (талька, серпентинита), термообработанного при температуре выше его разложения, а также каолинитсодержащего и глиноземсодержащего компонентов.
Изобретение относится к порошковой металлургии и обработке цветных металлов и может быть использовано в аддитивных технологиях для создания качественных конечных изделий сложной формы и при получении керамических изделий. Берут 4-6 исходных элементных порошков из ряда Ti, V, Zr, Nb, Hf, Ta, W, Mo чистотой не менее 99,5% в эквиатомном соотношении и смешивают их в гравитационном смесителе на воздухе.
Изобретение относится к порошковой металлургии и обработке цветных металлов и может быть использовано в аддитивных технологиях для создания качественных конечных изделий сложной формы и при получении керамических изделий. Берут 4-6 исходных элементных порошков из ряда Ti, V, Zr, Nb, Hf, Ta, W, Mo чистотой не менее 99,5% в эквиатомном соотношении и смешивают их в гравитационном смесителе на воздухе.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта (ГРП). Сырьевая смесь для изготовления магнезиально-силикатного проппанта содержит прокаленную магнезиально-силикатную породу: серпентинит, оливинит, дунит или их сочетания, и кремнеземистое сырье, при этом в качестве кремнеземистого компонента смеси используют аморфные кремнеземистые породы: диатомиты, трепелы, опоки или их сочетания, в количестве от 18% до 27% от массы сырьевой смеси, обеспечивающем соотношение оксида магния к оксиду кремния по массе в сырьевой смеси, близкое к 0,67 – стехиометрическому соотношению оксида магния к оксиду кремния в энстатите.

Изобретение относится к области керамических огнеупорных материалов для изготовления тиглей. Предложенный керамический огнеупорный материал тигля содержит 14,8-45 масс.

Изобретение относится к производству проппанта и его применению при добыче нефти и газа методом гидравлического разрыва пласта. Полифракционный проппант получен в виде гранул с кажущейся плотностью 1,6-3,0 г/см3 и размерами не более 2000 мкм из шихты, включающей предварительно обожженное при 1000-1400°С алюмосиликатное сырье и модифицирующую добавку - смесь ванадийсодержащего остатка от сжигания мазута, содержащего, масс.
Изобретение относится к технологии изготовления пьезокерамических элементов, на основе сегнетожёстких материалов системы цирконата-титаната свинца (ЦТС), устойчивых к внешним воздействиям и обладающих высокой температурной стабильностью параметров, и может быть использовано в различных устройствах, предназначенных для работы в силовых режимах, в том числе предназначенных для экстремальных условий (акселерометры, пьезодвигатели, пьезотрансформаторы).
Наверх