Способ изготовления пьезокерамического элемента


C04B35/6268 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2766856:

федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет» (RU)

Изобретение относится к технологии изготовления пьезокерамических элементов, на основе сегнетожёстких материалов системы цирконата-титаната свинца (ЦТС), устойчивых к внешним воздействиям и обладающих высокой температурной стабильностью параметров, и может быть использовано в различных устройствах, предназначенных для работы в силовых режимах, в том числе предназначенных для экстремальных условий (акселерометры, пьезодвигатели, пьезотрансформаторы). Техническим результатом изобретения является повышение значений диэлектрической проницаемости εТ330 и пьезомодуля d31, при сохранении значений плотности. Из сегнетожёсткого пьезоматериала системы цирконата-титаната свинца (ЦТС) PbZrTiMnNbZnO формуют заготовку под давлением 700–800 кгс/см2, затем проводят термопрессование заготовки с одноосной механической нагрузкой 1–3 106 Н/м2 при температуре 830–870оС и выдерживают её при этих условиях в течение 10–40 минут с последующим спеканием без нагрузки при температуре 1150-1230оС в течение 1-3 часов. 1 з.п. ф-лы, 1 табл., 8 пр.

 

Изобретение относится к технологии изготовления пьезокерамических элементов, на основе сегнетожёстких (легированных оксидами марганца, ниобия, цинка) материалов системы цирконата-титаната свинца (ЦТС), устойчивых к внешним воздействиям и обладающих высокой температурной стабильностью параметров, и может быть использовано в различных устройствах, предназначенных для работы в силовых режимах, в том числе предназначенных для экстремальных условий (акселерометры, пьезодвигатели, пьезотрансформаторы) [1].

Известен способ изготовления пьезоэлементов из сегнетожёсткого материала системы цирконата-титаната свинца (ЦТС) PbTiO3-PbZrO3-PbNb2/3Mn1/3O3-PbNb2/3Zn1/3O3, полученного по обычной керамической технологии. Из синтезированного пьезоматериала на гидравлическом прессе формуется заготовка методом полусухого прессования при давлении 700 – 800 кгс/см2. Далее производится операция нагревания заготовки до температуры спекания 1125 – 1175 ºС с одноосной механической нагрузкой 2–3 106 н/м2 на установке горячего прессования. Заготовка выдерживается под одноосной механической нагрузкой и температуре спекания в течение 6 часов. После выдержки спечённая заготовка охлаждается вместе с установкой горячего прессования до комнатной температуры естественным способом. Спеченная керамическая заготовка шлифуется и разрезается на тонкие диски толщиной 1 мм. На плоскости дисков наносятся токопроводящие электроды, путем вжигания серебросодержащей пасты. Поляризация полученных пьезокерамических элементов осуществляется при температуре 100 – 150 ºС в среде силиконового масла под напряжением 3 – 4 кВ/мм [2, 3].

Недостатком способа является невысокие значения относительной диэлектрической проницаемости εТ330 и пьезомодуля d31 у полученных пьезоэлементов на основе синтезированного пьезоматериала.

Наиболее близким по выполнению является способ изготовления пьезоэлемента из сегнетожёсткого пьезоматериала системы цирконата-титаната свинца (ЦТС) PbTiO3-PbZrO3-PbNb2/3Mn1/3O3-PbNb2/3Zn1/3O3, полученного по обычной керамической технологии. Из синтезированного пьезоматериала формуется заготовка методом полусухого прессования на гидравлическом прессе при давлении 700 кгс/см2 в виде диска диаметром 20 мм и высотой 2 мм. Спекание сформованной заготовки проводится при температурах 1200–1280ºС в течение 45 минут в камерной печи при естественном атмосферном давлении. Спеченная керамическая заготовка шлифуется до толщины 1 мм и на её плоскости наносятся токопроводящие электроды, путем вжигания серебросодержащей пасты. Поляризация полученных пьезокерамических элементов осуществляется при температуре 100 – 150 ºС в среде силиконового масла под напряжением 3 – 4 кВ/мм. [4].

Недостатком способа является невысокие значения относительной диэлектрической проницаемости εТ330 и пьезомодуля d31 пьезоэлементов, полученных на основе синтезированного пьезоматериала.

Техническим результатом изобретения является повышение значений диэлектрической проницаемости εТ330 и пьезомодуля d31, при сохранении значений механической плотности.

Технический результат достигается способом, характеризующимся тем, что из сегнетожёсткого пьезоматериала системы цирконата-титаната свинца (ЦТС) PbZrTiMnNbZnO формуют заготовку под давлением 700 – 800 кгс/см2, затем проводят термопрессование заготовки с одноосной механической нагрузкой 1–3 106 н/м2 при температуре 830 – 870 °С и выдерживают её при этих условиях в течение 10 – 40 минут (что приводит к усадке и упрочнению заготовки) с последующим спеканием без нагрузки при температуре 1150-1230 °С в течение 1-3 часов.

В качестве сегнетожёсткого пьезоматериала системы цирконата-титаната свинца (ЦТС) может быть использован материал PbTiO3-PbZrO3-PbNb2/3Mn1/3O3-PbNb2/3Zn1/3O3 состава мас. %: оксид свинца PbO 66,912-69,231, оксид циркония ZrO2 16,01–17,551, оксид титана TiO2 8,57–14,457, оксид марганца MnO2 0,153-0,538, оксид ниобия Nb2O5 2,241–3,578, оксид цинка ZnO 0,227-0,53.

Пьезокерамический материал может быть получен по обычной керамической технологии методом твердофазных реакций. Исходные компоненты в указанных дозировках смешивают (в барабанной шаровой мельнице) с добавлением 90 - 110 мл дистиллированной воды в течение 20 – 24 часов, после чего производится сушка материала (в сушильном шкафу) при температуре 90 - 100°С в течение 10 – 12 часов. Далее производится синтез материала (в камерной печи) при температуре 830 – 870°С в течение 3 – 4 часов. Синтезированный материал измельчается (в барабанной мельнице) в течение 20 – 24 часов, после чего производится сушка материала (в сушильном шкафу) при температуре 90 – 100°С в течение 10 – 12 часов.

Отличием предлагаемого способа является проведение, после формовки заготовки под давлением 700 – 800 кгс/см2, термопрессования с одноосной механической нагрузкой 1–3 106 H/м2 при температуре
830 – 870°С и с выдержкой под давлением и температурой в течение 10-40 минут, а также проведение последующего спекания при температуре 1150 – 1230°С в течение 1 – 3 часов, в отличие от известного способа [4], в котором спекание проводят при температуре 1200–1280ºС в течение 45 минут непосредственно после формовки заготовки под давлением 700 кгс/см2.

Ниже приведены примеры осуществления изобретения.

Пример 1а Получение пьезоматериала.

Готовят пьезоматериал из компонентов состава мас. %: PbO 66,912, ZrO2 16,01, TiO2 14,457, MnO2 0,153, Nb2O5 2,241, ZnO 0,227 по обычной керамической технологии, заключающейся в синтезе соединения методом твердофазных реакций.

Исходные компоненты в указанных дозировках смешивают в барабанной шаровой мельнице с добавлением 100 мл дистиллированной воды в течение 24 часов, после чего производится сушка материала в сушильном шкафу при температуре 100°С в течение 12 часов. Далее производится синтез материала в камерной печи при температуре 850 °С в течение 4 часов. Синтезированный материал измельчается в барабанной мельнице в течение 24 часов, после чего производится сушка материала в сушильном шкафу при температуре 100°С в течение 12 часов.

Пример 1б. Аналогично примеру 1а готовят пьезоматериал из компонентов состава мас. %: PbO 69,231, ZrO2 17,551, TiO2 8,57, MnO2 0,538, Nb2O5 3,578, ZnO 0,532.

Пример 1в

Аналогично примеру 1а и 1б готовят пьезоматериал синтезом в камерной печи при температуре 830 °С.

Пример 1г

Аналогично примеру 1а и 1б готовят пьезоматериал синтезом в камерной печи при температуре 870 °С.

Пример 2а. Формовка из синтезированного пьезоматериала прессзаготовки и получение пьезоэлемента.

Для формования прочной заготовки, в порошок синтезированного пьезоматериала по примеру 1а вводится связующая добавка - 3%-ный водный раствор поливинилового спирта в количестве 6 – 7% от общей массы пьезоматериала. Полученная масса перемешивается в ступке и пропускается через сито с размером ячейки 0,5 мм. Из полученного пресс-порошка на гидравлическом прессе в пресс-форме под давлением 700 кгс/см2 формуется заготовка в виде диска. Сформованная заготовка проходит процедуру сушки при комнатной температуре (10–12 ч) и при 80–95 ºС (20–24 ч) с целью исключения избыточной влаги, внесенной связующей добавкой.

Далее проводится операция термопрессования заготовки с одноосной механической нагрузкой 3 106 Н/м2 при температуре 850°С и фиксированной изотермической выдержке в течение 30 мин, с использованием установки горячего прессования (при термопрессовании с одноосной механической нагрузкой между зернами прессзаготовки в местах их контактов образуются прочные перемычки, формирующие предварительный каркас, обладающий достаточной прочностью для дальнейшего спекания без нагрузки). Следующим этапом термопрессованная заготовка охлаждается естественным способом до температуры окружающей среды и перемещается в камерную печь для спекания (нагрев и выдержка) при температуре 1150ºС в течение 3 часов без одноосной механической нагрузки (что приводит к упрочнению и увеличению размеров зерен предварительно жёстко сгруппированных между собой перемычками на этапе термопрессования, и что способствует спеканию заготовки преимущественно с диффузионным механизмом массопереноса).

Спеченная керамическая заготовка шлифуется и разрезается на тонкие диски толщиной 1 мм. На плоскости дисков наносятся токопроводящие электроды, путем вжигания серебросодержащей пасты. Поляризация полученных пьезокерамических элементов осуществляется при температуре 100 – 150 ºС в среде силиконового масла под напряжением 3 – 4 кВ/мм.

Аналогично проводят формовку, термопрессование и спекание пьезоматериалов, полученных по примерам 1б-1г.

Пример 2б

Аналогично примеру 2а проводят формовку заготовки на прессе под давлением 800 кгс/см2, термопрессование с одноосной механической нагрузкой 3 106 Н/м2 при температуре 830 °С и выдержке под нагрузкой в течение 40 минут и последующее спекание без нагрузки при температуре 1170 °С в течение 2 часов.

Пример 2в.

Аналогично примеру 2а проводят формовку заготовки на прессе под давлением 800 кгс/см2, термопрессование с одноосной механической нагрузкой 1 106 Н/м2 при температуре 870 °С и выдержке под нагрузкой в течение 10 минут и последующее спекание без нагрузки при температуре 1200 °С в течение 2 часов.

Пример 2г.

Аналогично примеру 2а проводят формовку заготовки на прессе под давлением 800 кгс/см2, термопрессование с одноосной механической нагрузкой 2 106 Н/м2 при температуре 850 °С и выдержке под нагрузкой в течение 20 минут и последующее спекание без нагрузки при температуре 1230 °С в течение 1 часа.

Результаты испытаний относительной диэлектрической проницаемости, εТ330, пьезомодуля d31, плотности и коэффициента связи kp полученных пьезоэлементов на основе исследуемых пьезоматериалов представлены в таблице. Аналогичные результаты получены для пьезоэлементов, полученных по примерам 1б-1г, 2б-2г. Там же приведены результаты испытаний по известным пособам [2] и [4] (см. таблицу).

Способ спекания Температура спекания, °С Плотность, г/см3 εТ330 d31, пКл/Н kp
Камерная печь (прототип) [4] 1200 - 1280 7,7 1140 115 0,63
Горячее прессование [2] 1125 7,67 1399 122 0,57
1150 7,72 1415 130 0,58
1175 7,7 1387 127 0,54
Заявляемый способ 1150 7,74 1886 217 0,62
1170 7,71 1791 213 0,59
1200 7,71 1700 200 0,57
1230 7,70 1527 184 0,57

Как видно, предлагаемый способ способствует в большей степени, чем известные способы повышению значений относительной диэлектрической проницаемости εТ330 (до значений 1520 – 1880) и пьезомодуля d31 (до значений 180 - 210·10-12 Кл/Н), при сохранении значений механической плотности ρ = 7,70 – 7,74 г/см3).

Список источников литературы

1. Нестеров, А.А. [Текст]: Труды международной научно-практической конференции «Фундаментальные проблемы пьезоэлектрического приборостроения» / Т.Г. Лупейко, А.А. Нестеров - Ростов-на-Дону: Изд-во Ростовского гос. Ун-та, 1999.- т.1,-с.254-261.

2. Marakhovsky, M.A. Comparative study of the hard and soft PZT-based ceramics sintered by various methods / M.A. Marakhovsky, A.A. Panich, M.V. Talanov, V.A. Marakhovsky, Ferroelectrics 575(1), с. 43-49 (2021). DOI: 10.1080/00150193.2021.1888225.

3. Глозман И.А. Пьезокерамика. «Энергия», Москва, 1972.-288 с.

4. Nishida M., Ouchi H. Improvements in and relating to ceramic compositions // GB patent N 1376013. - Publ. 04.12.1974. (прототип).

1. Способ изготовления пьезокерамического элемента, характеризующийся тем, что из сегнетожёсткого пьезоматериала системы цирконата-титаната свинца PbZrTiMnNbZnO формуют заготовку под давлением 700–800 кгс/см2, затем проводят термопрессование заготовки с одноосной механической нагрузкой 1–3 106 Н/м2 при температуре 830–870оС и выдерживают её при этих условиях в течение 10–40 минут с последующим спеканием без нагрузки при температуре 1150-1230оС в течение 1-3 часов.

2. Способ по п.1, характеризующийся тем, что в качестве сегнетожёсткого пьезоматериала системы цирконата-титаната свинца PbZrTiMnNbZnO используют материал состава, мас. %: оксид свинца PbO 66,912-69,231, оксид циркония ZrO2 16,01-17,551, оксид титана TiO2 8,57-14,457, оксид марганца MnO2 0,153-0,538, оксид ниобия Nb2O5 2,241-3,578, оксид цинка ZnO 0,227-0,53.



 

Похожие патенты:

Изобретение относится к получению магнитных оксидных материалов методом твердофазного синтеза и может быть использовано в СВЧ-устройствах и электронике. Для получения в виде спеченного порошка замещенного титаном гексаферрита бария BaFe12-xTixO19, где х=0,25÷2,0, порошки оксидов Fe2O3 и TiO2 и карбоната ВаСО3, взятые в стехиометрическом соотношении, подвергают гомогенизирующему помолу в сухом виде в течение 3 ч.

Изобретение используется для создания пьезоэлектрических преобразователей, работающих в высокочастотном диапазоне в интервале рабочих частот (4,0÷7,0) МГц. Заявляемый состав материала отвечает химической формуле: (1-х)Pb(Ti0,5Zr0,5)O3 – хCd0,5NbO3 (0,035≤х≤0,065) и содержит следующие компоненты, мас.%: PbO 64,19-66,28, ZrO2 17,72-18,30, TiO2 11,49-11,87, CdO 0,69-1,28, Nb2O5 2,86-5,32.

Изобретение относится к получению 21R-сиалоновой керамики, которую используют в качестве режущих пластин для резки металлов и в других областях при износе и ударе. Порошок 21R-сиалона, полученного методом самораспространяющегося высокотемпературного синтеза, и спекающую добавку в виде смеси оксидов Sm2O3-Al2O3 в соотношении Sm2O3:Al2O3=26,33:73,67 мол.

Изобретение относится к способам изготовления магнийсодержащих керамических проппантов средней и пониженной плотности, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта. Технический результат заключается в снижении растворимости проппанта в кислотах.

Изобретение относится к спечённому продукту, имеющему ширину более 50 мм, относительную плотность более 90%, состоящему более чем на 80% объема из уложенных друг на друга в горизонтальном положении керамических пластинок, где совокупность указанных пластинок имеет среднюю толщину менее 3 мкм, и содержащему более 20 мас.% оксида алюминия в расчете на массу продукта.

Настоящее изобретение относится к огнеупорным материалам на основе оксида магния. Согласно способу изготовления зернистого материала спеченную магнезию получают посредством спекания прессованных гранул из порошка MgO, предпочтительно из каустического порошка MgO, и путем последующего механического измельчения прессованных гранул.

Изобретение относится к способу получения композиционных материалов на основе карбида кремния, армированных текстильным материалом из карбида кремния, которые могут быть использованы для работы в агрессивных средах, в условиях высоких температур и истирающих воздействий, может использоваться для создания подшипников скольжения и качения, лопаток газотурбинного двигателя и изделий специального назначения.

Группа изобретений относится к заготовке для изготовления зубного протеза, к пористой подложке и к композитному блоку на основе такой заготовки, а также к способам изготовления указанных выше заготовки, подложки и композитного блока. Заготовка содержит группу агломерированных частиц керамики, стеклокерамики или стекла, так что (в об.%): более 40% и менее 90% частиц вышеупомянутой группы имеют размер более 0,5 мкм и менее 3,5 мкм (далее обозначены как «частицы эмали») и более 10% и менее 60% частиц группы имеют размер более 3,5 мкм и менее 5,5 мкм (далее обозначены как «частицы дентина»).

Изобретение относится к способам иммобилизации радионуклидов стронция в керамике и может быть использовано для отверждения радиоактивных отходов, а также изготовления радиоизотопной продукции. Подготовленную реакционную смесь SrO и WO3 в молярном соотношении 1:1 помещают в токопроводящую пресс-форму, подпрессовывают и подвергают искровому плазменному спеканию в вакуумной камере при постоянной механической нагрузке 24,5 МПа под воздействием однонаправленного импульсного тока, который генерируют пакетами по 12 импульсов при длительности одного импульса 3,3 мс, с паузами между пакетами, по времени равными длительности двух импульсов, с выдержкой при достигнутой температуре в течение 5 мин и последующим охлаждением в вакууме до температуры окружающей среды.

Изобретение относится к способу получения прозрачной керамики иттрий-алюминиевого граната (ИАГ), в том числе легированного ионами неодима, для использования в качестве активной среды в области фотоники и лазерной техники. Способ получения прозрачной ИАГ-керамики, включающий совместный высокоэнергетический помол в этаноле исходных порошков оксидов Y2O3, Nd2O3 и Al2O3 для формирования слабоагрегированной порошковой системы стехиометрии ИАГ с размером частиц в диапазоне 50-500 нм, сушку при температуре 70°С в течение 24 ч с последующей грануляцией порошка через сито с эффективным размером ячеек 200 меш и отжигом в атмосфере воздуха при температуре 600°С в течение 4 ч, искровое плазменное спекание полученного материала на первом этапе путем нагрева со скоростью 100°С/мин до 1000°С, выдержку, отжиг полученного образца в воздушной атмосфере, отличается тем, что высокоэнергетический помол в этаноле порошков исходных оксидов Y2O3, Nd2O3 и Al2O3 осуществляют с использованием LiF в качестве спекающей добавки в количестве 0,2 вес.% при 300 об/мин в течение 12 ч, искровое плазменное спекание проводят при внешнем давлении 50-70 МПа, причем на втором этапе со скоростью 25°С/мин до 1475°С с выдержкой материала при этих давлении и температуре в течение 45-60 мин, а отжиг полученного образца ведут в течение 10 ч при температуре 900-1000°С с последующим естественным охлаждением.
Изобретение относится к сырьевому материалу для получения огнеупора, к применению этого сырьевого материала, а также к огнеупору, содержащему подобный сырьевой материал. Сырьевой материал для получения огнеупора, имеющий химический состав, согласно которому присутствуют следующие оксиды в следующих количествах, мас.%: Al2O3 от 83 до 93, MgO от 4 до 9, СаО от 2 до 10, имеет открытую пористость в пределах от 30 до 60 об.%.
Наверх