Способ изготовления спеченных редкоземельных магнитов из вторичного сырья



Способ изготовления спеченных редкоземельных магнитов из вторичного сырья
Способ изготовления спеченных редкоземельных магнитов из вторичного сырья
Способ изготовления спеченных редкоземельных магнитов из вторичного сырья

Владельцы патента RU 2767131:

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

Изобретение относится к порошковой металлургии, в частности, к производству спеченных редкоземельных постоянных магнитов на основе системы Nd-Fe-B из вторичного сырья. Порошок магнитного материала из вторичного сырья на основе постоянных магнитов системы Nd-Fe-B размагничивают в вакуумной печи и подвергают гидрированию с обеспечением очистки поверхности и предварительного измельчения до 350 мкм. Порошок магнитного материала смешивают с добавками в виде гидридов РЗМ или сплавов на их основе и подвергают измельчению в шаровой вибрационной мельнице в среде ацетона с получением исходной смеси тонких порошков с размером частиц 3,5-4 мкм. Затем проводят перпендикулярное прессование в магнитном поле с получением заготовки, спекание и термическую обработку. Обеспечивается сокращение количества технологических переделов и возможность управления гистерезисными характеристиками. 3 табл., 1 пр.

 

Изобретение относится к порошковой металлургии, в частности к производству постоянных магнитов из спеченных порошков на основе системы Nd-R-Fe-B-T (R=Dy, Pr, Tb), полученных из вторичного сырья (отходы механической обработки резанием и магниты, отработавшие свой ресурс).

Изобретение может найти применение в электронике, в частности в секторе вакуумных СВЧ приборов, комплексов диагностики, акустических преобразователей, систем передачи момента и различных электробытовых приборов.

Известен способ производства магнитов Nd-Fe-B из вторичного сырья, при котором размагничивание исходного сырья происходит в муфельной печи на воздухе с последующим охлаждением в воду для разрушения защитного покрытия с целью подготовки магнитного материала к последующей водородной обработке для получения порошка [Miha Zakotnik, Peter Afiuny, Scott Dunn, Catalina Oana Tudor, Magnet recycling to create Nd-Fe-В magnets with improved or restored magnetic performance US9044834B2].

Недостаткам этого способа является повышенная степень окисления исходного сырья за счет применения нагрева в муфельной печи с последующим охлаждением в воду.

Наиболее распространенным является способ производства спеченных магнитов Nd-Fe-B из вторичного сырья, при котором после отделения защитного покрытия (химический способ, механический способ, резкое охлаждение) следует операция гидрирования с последующим отжигом порошкового материала в вакууме для проведения операции дегидрирования с целью подготовки порошка к струйному измельчению. Последующие операции измельчения (порошка основного материла и различных добавок) проводятся на струйных/вибрационных мельницах для получения порошкового материала пригодного для производства спеченных постоянных магнитов [Miha Zakotnik, Peter Afiuny, Scott Dunn, Catalina Oana Tudor, Magnet recycling to create Nd-Fe-В magnets with improved or restored magnetic performance US9044834B2. X.T. Li, M. Yue, W.Q. Liu, X.L. Li, X.F. Yi, X.L. Huang, D.T. Zhang, J.W. Chen Large batch recycling of waste Nd-Fe-B magnets to manufacture sintered magnets with improved magnetic properties].

Недостатком этого способа является:

а) Наличие в технологическом цикле операции дегидрования, что приводит к усложнению и удорожанию технологического процесса из-за необходимости проведения дополнительного технологического передела направленного на подготовку порошкового материала к тонкому помолу и наличия высоковакуумной печи, не задействованной в процессе спекания магнитов. И возможности окисления порошкового материала при перемещении между технологическими операциями.

б) Наличие отдельной стадии технологического процесса, направленной на удаление покрытия на основе никеля путем механической обработки (шлифовка), химического травления или снятия покрытия за счет резкого охлаждения исходного сырья. Наличие данной стадии в технологическом процессе приводит к увеличению времени производства магнитов и дополнительным затратам, связанным с использованием дополнительного оборудования и расходных материалов. И возможности окисления поверхностного слоя магнитов.

в) Предварительное измельчение крупных кусков исходного материала в среде газообразного азота способно приводить в адсорбции газовых примесей на частицах малого размера, получаемых при грубом измельчении, и дополнительному окислению исходного материала с последующим снижением уровня магнитных характеристик.

Наиболее близкими способами изготовления спеченных магнитов Nd-Fe-B являются способы:

1. Заключающийся в изготовлении заготовок по методу бинарных смесей из компонентов порошковой смесей различного состава (основной материал, добавка) [Xiaolian Liu, Mengjie Pan, Pei Zhang, Tianyu Ma, Lizhong Zhao, Lingwei Li Enchanced magnetic properties in chemically inhomogeneous Nd-Dy-Fe-B sintered magnets by multi-main-phase process, Journal of Rare Earths]; и

2. Заключающийся в изготовлении заготовок по методу бинарных смесей [Pavel А. Prokofev, Natalia В. Kolchugina, Katerina Skotnicova, Gennady S. Burkhanov, Miroslav Kursa, Mark V. Zheleznyi, Nikolay A. Dormidontov, Tomas Cegan, Anna S. Bakulina, Yurii S. Koshkidko, and Bedrich Smetana Blending Powder Process for Recycling Sintered Nd-Fe-B Magnets, Materials (Basel). 2020 Jul; 13(14): 3049].

Недостатком первого способа является применение смеси синтезированных сплавов по методу стрип-кастинг из чистых шихтовых компонентов.

Недостатком технологии по второму способу является использование изопропилового спирта в качестве размольной среды, который может содержать до 1% воды, и достаточно узкий диапазон рассматриваемых химических составов основного сплава и добавки к порошковой смеси для производства магнитов.

Задачей, на решение которой направлено изобретение, является создание полного цикла переработки отходов механической обработки резанием и магнитов, отработавших свой ресурс, различного химического состава за счет использования добавок гидридов РЗМ и сплавов на их основе с возможностью реализации процессов зернограничной диффузии и реструктуризации границ зерен при работе по схеме магнит-в-магнит.

Техническим результатом изобретения является снижение количества технологических переделов при производстве постоянных магнитов и возможность производства магнитов из вторичного сырья различных марок (отличие по химическому составу) по схеме магнит-в-магнит с возможностью управления гистерезисными характеристиками.

Технический результат достигается способом изготовления спеченных редкоземельных магнитов, включающий изготовление заготовок методом порошковой металлургии с применением перпендикулярного прессования, операции спекания и термической обработки, контроль геометрии, намагничивание и контроль магнитных характеристик, отличающийся тем, что в качестве исходного сырья используется порошок магнитного материала из вторичного сырья на основе постоянных магнитов, полученный после водородной обработки, при этом подготовка исходного сырья осуществляется в среде вакуума без предварительной подготовки поверхности, а процесс отделения защитного покрытия осуществляется в ходе процесса получения порошкового материала, не требующего предварительного измельчения перед стадией тонкого помола в среде ацетона.

Проведение операции термического размагничивания партий исходного сырья, различающихся по химическому составу, проводят путем повторения термической обработки для отделения деталей из немагнитного материала. Подготовка порошка к операции тонкого размола путем смешения гидрированных порошков различного химического состава позволяет снизить степень окисленности материала и дает возможность управления гистерезисными характеристиками для получения магнитов различных марок с коммерческим уровнем свойств. Представляемая технологическая цепочка по заявляемому способу содержит на 2 операции меньше, чем представленные в литературе. Отличительной особенностью от способа-прототипа является применение смеси гидрированных порошков, полученных из вторичного сырья.

Гидрированию подвергаются предварительно размагниченные магниты. В ходе проведения процесса водородной обработки происходит отделения частиц защитного покрытия, удаление с поверхности материала органических загрязнений и предварительное измельчение порошка до размеров до 350 мкм. Такой порошковый материал уже готов к операции тонкого измельчения. На данном этапе производиться смешение порошков различного химического состава и введение добавок в виде гидридов РЗМ и сплавов на их основе.

С учетом наличия гидридов РЗМ в фазовом составе порошковой смеси материал является более устойчивым к внешним окислительным факторам. Что улучшает воспроизводимость результатов и позволяет получать магниты с коммерческим уровнем свойств.

Примеры реализации способа.

Объектам реализации способа выбрано вторичное сырье (лом магнитов, отходы гидроабразивной и электроэрозионной резки) на основе Nd-Fe-B для изготовления магнитов с коммерческим уровнем свойств.

Химический состав исходных компонентов (вторичного сырья), использованных при изготовлении магнитов приведен в таблице 1.

Химический состав сплавов проконтролирован методом АЭС МП, путем растворения исходных материалов в соответствии с методикой измерения и внутренних стандартов метода.

Приготовление сплавов-добавок осуществлялось методом электродугового переплава в инертной среде нерасходуемым вольфрамовым электродом на медном водохлаждаемом поде из чистых шихтовых компонентов в среде аргона.

Для предотвращения окисления основного сплава (отходы ПМ Nd-Fe-B), его размагничивание проводили в вакуумной печи, путем проведения оптимальной термической обработки в соответствии с химическим составом перерабатываемого сырья. Таким образом, гидрированию подвергалось вторичное сырье (отходы ПМ с оптимальным фазовым составом) и РЗМ или сплавы на их основе. В таблице 2 приведены основные типы добавок для переработки Nd-Fe-B. На данном этапе получены порошки пригодные для тонкого измельчения со средним размером частиц до 350 мкм.

Тонкие порошки основного сплава и добавки, со средним размером частиц 3,5-4 мкм, получали в шаровой вибрационной мельнице, с полным заполнением барабанов высокочистым ацетоном, в качестве протектора окисления.

Порошки формовали методом перпендикулярного прессования в магнитном поле напряженностью 1,5 Тл.

Заготовки термически обработали по режимам:

- спекание в вакууме не хуже 1×10-4 мм рт.ст. при 1118°С - 2 ч,

- термическая обработка при 500°С - 2 ч с последующей закалкой газообразным азотом.

Измерения проведены стандартным методом измерения в полностью замкнутой магнитной цепи гистерезисграфа МН-50. Магнитные свойства полученных магнитов приведены в таблице 3.

Можно считать, что основные параметры магнитов, изготовленных по способу-прототипу и заявляемому способу примерно одинаковы. Расхождение параметров для образцов магнитов обоих способов незначительны и связаны с исходным составом основного материала.

Способ изготовления спеченных редкоземельных магнитов на основе системы Nd-Fe-B из вторичного сырья, включающий приготовление исходной смеси, содержащей порошок магнитного материала, перпендикулярное прессование упомянутой смеси в магнитном поле с получением заготовки, спекание и термическую обработку, отличающийся тем, что для приготовления исходной смеси используют порошок магнитного материала из вторичного сырья на основе постоянных магнитов системы Nd-Fe-B, который размагничивают в вакуумной печи и подвергают гидрированию путем водородной обработки с обеспечением очистки поверхности и предварительного измельчения до 350 мкм, затем порошок магнитного материала смешивают с добавками в виде гидридов РЗМ или сплавов на их основе и подвергают измельчению в шаровой вибрационной мельнице в среде ацетона с получением исходной смеси тонких порошков с размером частиц 3,5-4 мкм.



 

Похожие патенты:

Настоящее изобретение относится к листу анизотропной электротехнической стали, который используется в качестве материала металлического сердечника для трансформатора, а также к способу его производства. Лист анизотропной электротехнической стали содержит основной стальной лист, промежуточный слой оксидной пленки, который расположен на основном стальном листе, содержит SiO2 и имеет среднюю толщину 1,0 нм - 1,0 мкм, и изоляционное покрытие с натяжением, которое расположено на промежуточном слое оксидной пленки.

Изобретение относится к мателларугии, а именно к получению листа из текстурированной электротехнической стали. Лист из текстурированной электротехнической стали, имеющий основное керамическое покрытие на своей поверхности, в котором разница в концентрациях O, Si, Mg, Al, Mn, P, Ca и Ti на лицевой и обратной поверхностях основного керамического покрытия относительно средней концентрации каждого из указанных элементов на лицевой и обратной поверхностях указанного покрытия составляет: каждого элемента из O, Si и Mg: в пределах ± 5%, одного или нескольких элементов из Al, Mn и P: в пределах ± 15%, одного или нескольких элементов из Ca и Ti: в пределах ± 20%.

Электротехнический стальной лист с ориентированной зеренной структурой изготовлен прокаткой, в котором бороздка сформирована на поверхности электротехнического стального листа с ориентированной зеренной структурой с предопределенными интервалами в направлении прокатки, причем в сечении, ортогональном к бороздке электротехнического стального листа с ориентированной зеренной структурой, значение средней разориентации зерен в области, которая является квадратной областью, сформированной внутрь электротехнического стального листа с ориентированной зеренной структурой от дна бороздки, где длина каждой стороны упомянутой квадратной области равна 50 мкм, составляет 0,1° или более и 3,0° или менее.

Изобретение относится к области металлургии, а именно к листу анизотропной электротехнической стали. Лист имеет химический состав, содержащий в мас.%: от 2,0 до 7,0% Si, от 0 до 0,030% Nb, от 0 до 0,030% V, от 0 до 0,030% Mo, от 0 до 0,030% Ta, от 0 до 0,030% W, не более 0,0050% C, от 0 до 1,0% Mn, от 0 до 0,0150% S, от 0 до 0,0150% Se, от 0 до 0,0650% Al, от 0 до 0,0050% N, от 0 до 0,40% Cu, от 0 до 0,010% Bi, от 0 до 0,080% B, от 0 до 0,50% P, от 0 до 0,0150% Ti, от 0 до 0,10% Sn, от 0 до 0,10% Sb, от 0 до 0,30% Cr, от 0 до 1,0% Ni, остальное - Fe и примеси.

Изобретение относится к области металлургии, а именно к листу анизотропной электротехнической стали, используемому в качестве материала сердечника трансформаторов. Лист имеет химический состав, содержащий в мас.%: от 2,0 до 7,0 Si, от 0 до 0,030 Nb, от 0 до 0,030 V, от 0 до 0,030 Мо, от 0 до 0,030 Та, от 0 до 0,030 W, не более 0,0050 С, от 0 до 1,0 Mn, от 0 до 0,0150 S, от 0 до 0,0150 Se, от 0 до 0,0650 Al, от 0 до 0,0050 N, от 0 до 0,40 Cu, от 0 до 0,010 Bi, от 0 до 0,080 В, от 0 до 0,50 Р, от 0 до 0,0150 Ti, от 0 до 0,10 Sn, от 0 до 0,10 Sb, от 0 до 0,30 Cr, от 0 до 1,0 Ni, остальное - Fe и примеси.

Группа изобретений относится к покрывающей жидкости для формирования изоляционного покрытия на листе анизотропной электротехнической стали, листу анизотропной электротехнической стали и способу производства листа анизотропной электротехнической стали. Покрывающая жидкость для формирования изоляционного покрытия на листе анизотропной электротехнической стали содержит частицы алюминийсодержащего гидратированного силиката и борную кислоту без содержания органического компонента.

Изобретение относится к области металлургии, а именно к листу электротехнической стали с ориентированной зеренной структурой, используемому в качестве материала железного сердечника трансформаторов. Лист имеет химический состав, мас.%: от 2,0 до 7,0 Si, от 0 до 0,030 Nb, от 0 до 0,030 V, от 0 до 0,030 Mo, от 0 до 0,030 Ta, от 0 до 0,030 W, более 0 до 0,0050 C, от 0 до 1,0 Mn, от 0 до 0,0150 S, от 0 до 0,0150 Se, от 0 до 0,0650 Al, от 0 до 0,0050 N, от 0 до 0,40 Cu, от 0 до 0,010 Bi, от 0 до 0,080 B, от 0 до 0,50 P, от 0 до 0,0150 Ti, от 0 до 0,10 Sn, от 0 до 0,10 Sb, от 0 до 0,30 Cr, от 0 до 1,0 Ni, остальное - железо и примеси.

Изобретение относится к области металлургии, а именно к листу электротехнической стали с ориентированной зеренной структурой, используемому в качестве материала для изготовления железных сердечников трансформаторов. Лист имеет толщину 0,18-0,35 мм и содержит 2,5-3,5 мас.% Si и 0,005 мас.% или менее С, остальное – Fe и неизбежные примеси.

Изобретение относится к металлургии, а именно к листу из анизотропной электротехнической стали, и может быть использовано в качестве материала сердечника для трансформатора. Лист анизотропной электротехнической стали содержит: основной стальной лист; промежуточный слой оксидной пленки, включающий в себя SiO2, который располагается на основном стальном листе и имеет среднюю толщину 1,0 нм - 1,0 мкм; и изоляционное покрытие с натяжением, которое располагается на промежуточном слое оксидной пленки, включающем в себя SiO2.

Изобретение относится к металлургии, конкретно к продукции из листовой анизотропной электротехнической стали, преимущественно, с ориентированной зеренной структурой, которая может быть использована для изготовления различного типа магнитопроводов, в том числе сердечников трансформаторов и других электрических машин.

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает получение расплава на основе алюминия, содержащего, мас.%: кальций 0,8-1,8, цирконий 0,3-0,7, железо 0,1-0,64, кремний 0,05-0,4, алюминий - остальное, получение литой заготовки диаметром от 8 до 12 мм путем кристаллизации расплава в электромагнитном кристаллизаторе, деформацию литой заготовки путем холодного волочения и стабилизирующий отжиг полученной проволоки при температуре 420-460°С в течение 1-10 часов.
Наверх