Способ прогнозирования дебита скважин с учетом анизотропии проницаемости карбонатных горных пород

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке сложнопостроенных карбонатных нефтяных залежей, характеризующихся анизотропией проницаемости горных пород. Предлагаемый способ определения дебита скважин с учетом анизотропии проницаемости горных пород включает определение обводненности продукции (W); газовый фактор (Гф); толщину пласта (h); глубину вскрытого интервала (Нвск); коэффициент пористости (kпор); затрубное давление (Рзатр); пластовое давление (Рпл); забойное давление (Рзаб); скин-фактор (S); вязкость нефти (μ); значение горизонтальной (kгор) и вертикальной (kверт) проницаемостей. Используя данные показатели без учета значений параметра Ркомп, рассчитывают дебит скважины :

В случае использования в качестве классификатора значения Ркомп, которое рассчитывают по следующей формуле:, где Рин - индивидуальные вероятности P(h), Р(Нвск), Р(kпор) с учетом kгор и kверх; П - их произведение, класс модели дебита жидкости определяют: Ркомп>0,5 - модель дебита жидкости относят к первому классу, при Ркомп<0,5 - модель дебита жидкости относят ко второму классу, в соответствии с которыми рассчитывают дебит жидкости. Техническим результатом изобретения является повышение точности и достоверности определения дебита скважин, которые эксплуатируют сложнопостроенные карбонатные коллектора, характеризующиеся анизотропией проницаемости горных пород. 1 табл., 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке сложнопостроенных карбонатных нефтяных залежей, характеризующихся анизотропией проницаемости горных пород.

Поиск по патентным и научно-техническим источникам информации позволил установить, что аналоги способа определения дебита скважин с учетом анизотропии проницаемости карбонатных горных пород не обнаружены.

Техническим результатом изобретения является повышение точности и достоверности определения дебита скважин, которые эксплуатируют сложнопостроенные карбонатные коллектора, характеризующиеся анизотропией проницаемости горных пород.

Указанный технический результат достигается с помощью предлагаемого способа прогнозирования дебита скважин с учетом анизотропии проницаемости горных пород, заключающегося в том, что, используя данные гидродинамических исследований: обводненности продукции (W); газовый фактор (Гф); толщина пласта (h); глубина вскрытого интервала (Нвск); коэффициент пористости (kпор); затрубное давление (Рзатр); пластовое давление (Рпл); забойное давление (Рзаб); скин-фактор (S); вязкость нефти (μ); значение горизонтальной (kгор) и вертикальной (kверт) проницаемостей, рассчитывают дебит скважины по формуле:

где kгор - горизонтальная проницаемость, мкм2;

kверт - вертикальная проницаемость, мкм2;

Рпл - пластовое давление, МПа;

Рзатр - затрубное давление, МПа;

kпор - коэффициент пористости, д.ед.;

S - скин-фактор.

в случае использования в качестве классификатора значение Ркомп, который рассчитывают по следующей формуле:

где Рин - индивидуальные вероятности P(h), Р(Нвск), Р(kпор) с учетом kгор и kверт,

П - их произведение,

определяют класс модели дебита жидкости,

при Ркомп>0,5 - модель дебита жидкости относят к первому классу;

при Ркомп<0,5 - модель дебита жидкости относят ко второму классу;

если построенная модель скважины относится к первому классу, рассчитывают дебит жидкости по формуле:

в случае отнесения модели дебита жидкости ко второму классу рассчитывают дебит жидкости по формуле:

Авторами впервые на основе статистического анализа накопленного опыта проведения гидродинамических исследований скважин установлена зависимость, позволяющая спрогнозировать дебит скважины с учетом анизотропии проницаемости карбонатных горных пород.

Достоверность расчетов подтверждается показателями: коэффициентом R - множественный коэффициент корреляции, и параметром р - достигаемый уровень статистической значимости. Эти показатели демонстрируют точность расчетов. Чем ближе коэффициент R к единице, тем выше достоверность расчетов. Параметр р также представляет собой статистическую характеристику достоверности. Эти параметры характеризуют достоверность множественных расчетов, то есть определяются для выборки.

Предлагаемый способ поясняется чертежами, представленными на фиг. 1-2

На фиг. 1 представлено корреляционное поле между фактическими и рассчитанными значениями дебитами жидкости без учета значений параметра Ркомп.

На фиг. 2 представлено корреляционное поле между фактическими и рассчитанными значениями дебитами жидкости с учетом значений параметра Рклмп.

При реализации предлагаемого способа выполняются следующие операции в нижеуказанной последовательности (для наглядности, операции способа совмещены с примером конкретного осуществления).

Данный способ апробирован на фаменском объекте разработки одного из нефтяных месторождений.

1. Исходные данные для расчетов представлены в таблице.

2. Строят модель, по которой определяют дебит жидкости по следующей зависимости:

3. В случае использования в качестве классификатора значение Ркомп, который рассчитывают по следующей формуле:

где Рин - индивидуальные вероятности P(h), Р(Нвск), Р(kпор) с учетом kгор и kверт; П - их произведение,

определяют класс модели дебита жидкости.

Так как Ркомп<0,5 - модель дебита жидкости относят ко второму классу .

Рассчитывают для этой модели второго класса дебит жидкости по формуле:

В качестве подтверждения результата в эту же дату на скважине был произведен замер дебита на автоматизированной групповой замерной установке (АГЗУ), значение которого составляет 42,8 м3/сут. Таким образом, погрешность определения дебита составляет менее 1,5 м3/сут (3,2%), что доказывает высокую точность предлагаемого способа с использованием в качестве классификатор значение Ркомп и без него.

Проиллюстрировать достоверность расчетов можно рисунками. На фиг. 1 представлено корреляционное поле между фактическими и рассчитанными значениями дебитами жидкости. В идеале, при 100% точности расчетов (погрешность равна нулю), эти графики должны иметь вид прямой, выходящей из начала координат под углом 45°. В нашем случае соотношение весьма тесное, что указывает на высокую достоверность результатов.

Таким образом, для условий сложнопостроенных карбонатных коллекторов разработан способ, который позволяет точно и достоверно определить дебит жидкости скважин с учетом геологических особенностей строения пластов.

Способ прогнозирования дебита скважин с учетом анизотропии проницаемости карбонатных горных пород, заключающийся в том, что, используя данные гидродинамических исследований скважин: обводненности продукции (W); газовый фактор (Гф); толщина пласта (h); глубина вскрытого интервала (Нвск); коэффициент пористости (kпор); затрубное давление (Рзатр); пластовое давление (Рпл); забойное давление (Рзаб); скин-фактор (S); вязкость нефти (μ); значение горизонтальной (kгор) и вертикальной (kверт) проницаемостей, рассчитывают дебит скважины по формуле:

,

где kгор - горизонтальная проницаемость, мкм2;

kверт - вертикальная проницаемость, мкм2;

Рпл - пластовое давление, МПа;

Рзатр - затрубное давление, МПа,

кпор - коэффициент пористости, д.ед.;

S - скин-фактор;

в случае использования в качестве классификатора значения Ркомп, которое рассчитывают по следующей формуле:

,

где Рин - индивидуальные вероятности P(h), Р(Нвск), Р(kпор) с учетом kгор и kверт,

П - их произведение,

определяют класс модели дебита жидкости:

при Ркомп>0,5 - модель дебита жидкости относят к первому классу;

при Ркомп<0,5 - модель дебита жидкости относят ко второму классу;

если построенная модель скважины относится к первому классу, рассчитывают дебит жидкости по формуле:

в случае отнесения модели дебита жидкости ко второму классу рассчитывают дебит жидкости по формуле:



 

Похожие патенты:

Изобретение относится к горной промышленности, а именно к исследованию газовых, газо-конденсатных и нефтяных скважин, и предназначено для исследования дебета скважин. Предложен диафрагменный измеритель критических течений, который содержит корпус с резьбой для установки устройства на скважине, закрепленную на корпусе диафрагму, резьбовой патрубок для направления среды к измерительному прибору, при этом корпус выполнен сварным, состоящим из цилиндрической части и привариваемого к цилиндрической части торцевого фланца с овальным отверстием, больший размер которого меньше внутреннего диаметра цилиндрической части корпуса, и с внутренней овальной проточкой на глубину толщины диафрагмы, а диафрагма выполнена овальной и размещена в проточке.
Изобретение относится к нефтегазодобывающей промышленности, в частности к разработке месторождений нефти с перетоками воды и/или нефти из разных уровней. Способ разработки нефтяной залежи с межпластовыми перетоками, включающий отбор нефти через добывающие скважины, закачку воды через нагнетательные скважины, замер добычи жидкости, ее обводненности и добычи нефти в продуктивном пласте, выявление скважин, добывающих избыточную воду, источников обводнения скважин.

Изобретение относится к способам заканчивания скважин. Заявлен способ для использования при установке узла для заканчивания скважины в ствол скважины за один спускоподъемный рейс в ствол скважины.

Группа изобретений относится к добыче многофазных и/или многокомпонентных флюидов из нефтегазовых скважин и предназначено для проведения измерений основных параметров потока добываемого флюида в рабочих условиях во время добычи. Система содержит по меньшей мере одно основное измерительное устройство, установленное на линии потока добываемого из скважины флюида и предназначенное для измерений параметров потока добываемого флюида, устройство для изменения параметров потока добываемого флюида, подключенное к линии потока добываемого флюида, и по меньшей мере одно дополнительное измерительное устройство, подключенное к линии потока добываемого флюида и предназначенное для измерения измененных параметров потока добываемого флюида.

Изобретение относится к нефтегазовой сфере, в частности - для добывающих и нагнетательных скважин, эксплуатируемых одного или одновременно нескольких нефтегазоносных пластов, в качестве системы, измеряющей или регистрирующей основные параметры потока флюида, а также управляющей дебитом посредством изменения площади проходного канала.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Техническим результатом изобретения является повышение точности измерения дебита нефтяных скважин.

Изобретение относится к области измерения расхода многокомпонентных газожидкостных потоков, а именно к способу измерения дебита газоконденсатной скважины, и может быть использовано в сфере обслуживания газоконденсатных скважин. Техническим результатом является обеспечение упрощенного измерения расхода компонентов нестабильного газового конденсата с использованием единого параметра идентификации компонента.

Изобретение относится к нефтедобывающей промышленности и может быть использовано как способ отбора жидких углеводородов и закачки вытесняющих агентов, например воды, углекислого газа, водогазовых смесей, теплоносителей и др., при организации гидродинамического воздействии на пласт с целью достижения максимального эффекта от изменения кинематики потоков в системе скважин.

Изобретение относится к способу локализации остаточных запасов и направлено на определение степени выработанности пластов нефтяных месторождений за счет выявления застойных, не охваченных процессами фильтрации, зон. Способ включает: определение фонда скважин, расположенных на одном участке месторождения.

Изобретение относится к горной и нефтегазовой отраслям промышленности и может быть использовано при эксплуатации и тестировании горизонтальных скважин для исследования реальных фильтрационных потоков продуктивного пласта. Устройство для мониторинга и исследования скважин, закрепленное на участках базовой трубы, содержит цилиндрический корпус, выполненный в виде кожуха, представляющего собой стальную перфорированную трубу со сквозными отверстиями.

Группа изобретений относится к нефтегазодобывающей промышленности и может применяться для раздельного учета продукции при совместной эксплуатации нескольких пластов. Для осуществления способа определения доли пластового флюида в смеси флюидов получают по меньшей мере одну пробу индивидуального пластового флюида из по меньшей мере двух разных пластов. Подготавливают калибровочные смеси путем смешения индивидуальных пластовых флюидов разных пластов в различных соотношениях. Определяют углеводородный состав полученных калибровочных смесей. Устанавливают взаимосвязи между содержанием индивидуальных пластовых флюидов в калибровочных смесях и полученными данными об углеводородном составе калибровочных смесей с использованием метода многомерной регрессии. Получают пробу исследуемого флюида и определяют её углеводородный состав. Определяют доли каждого индивидуального пластового флюида по полученным данным об углеводородном составе пробы исследуемого флюида и по установленной взаимосвязи между содержанием индивидуальных флюидов в калибровочных смесях и углеводородным составом калибровочных смесей. По второму варианту получают по меньшей мере три пробы индивидуального пластового флюида. Предложена система и машиночитаемый носитель для определения доли пластового флюида в смеси флюидов. Достигается технический результат – повышение точности определения содержания доли каждого пластового флюида в смеси двух и более флюидов, а также повышение надёжности различимости углеводородных флюидов в смеси, которые относятся к разным пластам/месторождениям. 4 н. и 47 з.п. ф-лы, 11 ил., 6 табл.
Наверх