Система интервального регулирования движения поездов

Изобретение относится к средствам интервального регулирования движения поездов. Система включает наземную и бортовую части. Наземная содержит ЭВМ (1) центра диспетчерского контроля и управления с процессором (2), модулем (3) моделирования поездной ситуации на перегонах, модулем (4) мониторинга условий движения на перегонах, модулем (5) комплексной обработки данных, интеллектуальным программным модулем (27) управления движением по железнодорожному участку в резервном режиме, оптоволоконный кабель (6), станционный блок (9) формирования и анализа импульсных световых сигналов, станционную цифровую сеть (10), задействует рельсовые цепи (11), передатчик (12) блока напольной аппаратуры питающего конца (13), приемник (14) блока напольной аппаратуры приемного конца (15) с блоком (20) формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН, двухпроводную линию (16) силового электропитания, блоки (17) и (18) оптоэлектрического преобразования, связанные со связевыми оптическими волокнами (19) оптоволоконного кабеля (6), блок (18) оптоэлектрического преобразования, источник (28) резервного силового электропитания, снабженный средствами защиты от вандализма. На вовлеченных в систему поездах установлено бортовое оборудование, включающее связанные через бортовой системный интерфейс (21) локомотива обмена цифровыми данными локомотивное устройство (22) безопасности, блок (23) измерения скорости и пройденного расстояния, блок (24) расчета допустимой скорости, дисплей (25) машиниста и локомотивное радиопередающее устройство (26). Достигается повышение надежности системы. 2 ил.

 

Изобретение относится к железнодорожному транспорту и может быть использовано для диагностики и мониторинга условий движения и интервального регулирования движения поездов по перегону.

Известна cистема интервального регулирования движения поездов на базе радиоканала, содержащая стационарные центры радиоблокировки, подключенные к ЭВМ центра диспетчерского контроля и управления и соединенные между собой и с перегонными базовыми станциями радиоканала через сеть передачи данных, а на перегоне между соседними станциями через оптоволоконный кабель и радиоканал, на вовлеченных в систему поездах - бортовое оборудование, включающее соединенные между собой через бортовой системный интерфейс локомотива обмена цифровыми данными комплексное локомотивное устройство безопасности, блок определения местоположения локомотива, выполненный на основе спутникового навигатора, блок измерения скорости и пройденного расстояния, блок расчета допустимой скорости, кривых торможения и обмена данными со стационарными центрами радиоблокировки по радиоканалу, вихретоковое устройство текущего контроля фактического состояния рельсов и уточненного измерения скорости, дисплей машиниста, блок головного полукомплекта непрерывного контроля целостности тормозной магистрали поезда, соединенный с блоком полукомплекта хвостового вагона состава поезда через тормозную магистраль поезда, а также через локомотивное радиоприемопередающее устройство и бортовой локальный радиоканал с радиоприемопередающим устройством блока полукомплекта хвостового вагона состава поезда, которое по цепи питания связано с первым выходом автономного источника электропитания, выполненного на базе пневмоэлектрогенератора, вход для подачи воздуха которого подключен к тормозной магистрали поезда, при этом второй выход автономного источника электропитания соединен с входом электропитания блока светового сигнала конца состава поезда, оптоволоконный кабель выполнен в виде комбинированного сенсорного и связевого кабеля, уложенного на перегоне вдоль железнодорожного пути, с обеспечением передачи на его внешнюю оболочку воздействий внешних сил от конструктивных элементов железнодорожного пути и содержащего внутренние элементы механической связи между внешней оболочкой оптоволоконного кабеля и размещенными в нем сенсорными оптическими волокнами с изменяющимися оптическими параметрами при их деформации, при этом одним концом сенсорные оптические волокна соединены с первыми портами связи перегонных блоков формирования и анализа импульсных световых сигналов, вторые порты связи которых подключены к портам связи напольных блоков видеонаблюдения, в составе которых имеется блок автоматической регистрации светового сигнала конца состава поезда, а другими концами соединены с соответствующими первыми портами станционного блока формирования и анализа импульсных световых сигналов, второй порт связи которого через сеть передачи данных соединен с ЭВМ центра диспетчерского контроля и управления (RU 2556133, B61L27/04, 10.07.2015).

Известная система практически не применима на малодеятельных линиях из-за ее сложности, обусловленной наличием на перегоне базовых станций цифрового радиоканала связи. В гористой местности спутниковые навигационные устройства из-за плохой видимости спутников работают недостаточно надежно. Эта система также не применима для управления локомотивами, не имеющими современные устройства АЛСН числового кода, которые еще часто используются на удаленных и малодеятельных линиях.

В качестве прототипа принята система интервального регулирования движения поездов, содержащая ЭВМ центра диспетчерского контроля и управления, к процессору которой подключены программный модуль моделирования поездной ситуации на перегонах, программный модуль мониторинга условий движения на перегонах, программный модуль комплексной обработки данных, принимаемых им от упомянутых программных модулей моделирования и мониторинга, оптоволоконный кабель, выполненный в виде комбинированного сенсорного и связевого кабеля, уложенного на перегоне вдоль железнодорожного пути с обеспечением передачи на его внешнюю оболочку воздействий внешних сил от конструктивных элементов железнодорожного пути и содержащего внутренние элементы механической связи между внешней оболочкой оптоволоконного кабеля и размещенными в нем сенсорными оптическими волокнами с изменяющимися оптическими параметрами при их деформации, при этом одним концом сенсорные оптические волокна соединены с первым портом сопряжения станционного блока формирования и анализа импульсных световых сигналов, второй порт сопряжения которого через станционную цифровую сеть передачи данных соединен с ЭВМ центра диспетчерского контроля и управления, на каждом перегоне путевые участки снабжены рельсовыми цепями, в каждой из которых к передающему концу рельсовой цепи подключен выход передатчика соответствующего блока напольной аппаратуры питающего конца, а к приемному концу рельсовой цепи подключен вход приемника соответствующего блока напольной аппаратуры приемного конца, при этом входы питания этих блоков напольной аппаратуры подключены к двухпроводной линии силового электропитания, размещенной в комбинированном оптоволоконном кабеле, информационные выходы передатчика и приемника блоков напольной аппаратуры через соответствующие блоки оптоэлектрического преобразования соединены со связевыми оптическими волокнами оптоволоконного кабеля, которые через станционную цифровую сеть передачи данных соединены с процессором ЭВМ центра диспетчерского контроля и управления, при этом на вовлеченных в систему поездах установлено бортовое оборудование, включающее соединенные между собой через бортовой системный интерфейс локомотива обмена цифровыми данными локомотивное устройство безопасности, блок измерения скорости и пройденного расстояния, блок расчета допустимой скорости, дисплей машиниста и локомотивное радиопередающее устройство, в каждый из блоков напольной аппаратуры приемного конца рельсовой цепи введен блок формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН, порт информационного обмена которого соединен с блоком оптоэлектрического преобразования, а выход через выход блока напольной аппаратуры приемного конца подключен к концу своей рельсовой цепи (RU2746629, B61L27/00, 19.04.2021).

Данная система обеспечивает упрощение перегонной и локомотивной аппаратуры и обеспечивает применимость ее для управления локомотивами, не имеющими современные устройства АЛСН числового кода, что дает возможность использовать систему в малонаселенных районах с тяжелыми условиями эксплуатации напольной аппаратуры.

Недостатком известной системы является то, что повреждение аппаратуры или электропитания рельсовых цепей приводит к резкому замедлению движения поездов по перегону, где возникают такие повреждения и также по смежным с ним участкам железной дороги. В неохраняемых местах возможными причинами таких повреждений могут быть кроме различных природных и техногенных факторов действия злоумышленников и вандалов.

Технический результат изобретения заключается в повышении надежности системы.

Технический результат достигается тем, что в систему интервального регулирования движения поездов, содержащую ЭВМ центра диспетчерского контроля и управления, к процессору которой подключены программный модуль моделирования поездной ситуации на перегонах, программный модуль мониторинга условий движения на перегонах, программный модуль комплексной обработки данных, принимаемых им от упомянутых программных модулей моделирования и мониторинга, оптоволоконный кабель, выполненный в виде комбинированного сенсорного и связевого кабеля, уложенного на перегоне вдоль железнодорожного пути с обеспечением передачи на его внешнюю оболочку воздействий внешних сил от конструктивных элементов железнодорожного пути и содержащего внутренние элементы механической связи между внешней оболочкой оптоволоконного кабеля и размещенными в нем сенсорными оптическими волокнами с изменяющимися оптическими параметрами при их деформации, при этом одним концом сенсорные оптические волокна соединены с первым портом сопряжения станционного блока формирования и анализа импульсных световых сигналов, второй порт сопряжения которого через станционную цифровую сеть передачи данных соединен с ЭВМ центра диспетчерского контроля и управления, на каждом перегоне путевые участки снабжены рельсовыми цепями, в каждой из которых к передающему концу рельсовой цепи подключен выход передатчика соответствующего блока напольной аппаратуры питающего конца, а к приемному концу рельсовой цепи подключен вход приемника соответствующего блока напольной аппаратуры приемного конца, при этом входы питания этих блоков напольной аппаратуры подключены к двухпроводной линии силового электропитания, размещенной в комбинированном оптоволоконном кабеле, информационные выходы передатчика и приемника блоков напольной аппаратуры через соответствующие блоки оптоэлектрического преобразования соединены со связевыми оптическими волокнами оптоволоконного кабеля, которые через станционную цифровую сеть передачи данных соединены с процессором ЭВМ центра диспетчерского контроля и управления, каждый из блоков напольной аппаратуры приемного конца рельсовой цепи снабжен блоком формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН, порт информационного обмена которого соединен с блоком оптоэлектрического преобразования, а выход через выход блока напольной аппаратуры приемного конца подключен к концу своей рельсовой цепи, при этом на вовлеченных в систему поездах установлено бортовое оборудование, включающее соединенные между собой через бортовой системный интерфейс локомотива обмена цифровыми данными локомотивное устройство безопасности, блок измерения скорости и пройденного расстояния, блок расчета допустимой скорости, дисплей машиниста и локомотивное радиопередающее устройство, согласно изобретению введены интеллектуальный программный модуль управления движением по железнодорожному участку в резервном режиме, который выполнен с использованием нейронных сетей и подключен к процессору ЭВМ центра диспетчерского контроля и управления, и источники резервного силового электропитания, снабженные средствами защиты от вандализма, выходы источников резервного силового электропитания соединены с входами резервного электропитания блоков формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН.

На чертежах приведены структурные схемы стационарного (фиг. 1) и локомотивного (фиг. 2) оборудования системы интервального регулирования движения поездов.

Система интервального регулирования движения поездов содержит ЭВМ 1 центра диспетчерского контроля и управления, к процессору 2 которой подключены программный модуль 3 моделирования поездной ситуации на перегонах, программный модуль 4 мониторинга условий движения на перегонах, программный модуль 5 комплексной обработки данных, принимаемых им от упомянутых программных модулей 3 и 4 моделирования и мониторинга, оптоволоконный кабель 6, выполненный в виде комбинированного сенсорного и связевого кабеля, уложенного на перегоне вдоль железнодорожного пути с обеспечением передачи на его внешнюю оболочку воздействий внешних сил от конструктивных элементов железнодорожного пути и содержащего внутренние элементы 7 механической связи между внешней оболочкой оптоволоконного кабеля и размещенными в нем сенсорными оптическими волокнами 8 с изменяющимися оптическими параметрами при их деформации, при этом одним концом сенсорные оптические волокна соединены с первым портом сопряжения станционного блока 9 формирования и анализа импульсных световых сигналов, второй порт сопряжения которого через станционную цифровую сеть 10 передачи данных соединен с ЭВМ 1 центра диспетчерского контроля и управления, на каждом перегоне путевые участки снабжены рельсовыми цепями 11, в каждой из которых к передающему концу рельсовой цепи подключен выход передатчика 12 соответствующего блока 13 напольной аппаратуры питающего конца, а к приемному концу рельсовой цепи 11 подключен вход приемника 14 соответствующего блока 15 напольной аппаратуры приемного конца, при этом входы питания этих блоков 13 и 15 напольной аппаратуры подключены к двухпроводной линии 16 силового электропитания, размещенной в комбинированном оптоволоконном кабеле 6, информационные выходы передатчика 12 и приемника 14 блоков напольной аппаратуры через соответствующие блоки 17 и 18 оптоэлектрического преобразования соединены со связевыми оптическими волокнами 19 оптоволоконного кабеля 6, которые через станционную цифровую сеть 10 передачи данных соединены с процессором 2 ЭВМ 1 центра диспетчерского контроля и управления, каждый из блоков 15 напольной аппаратуры приемного конца рельсовой цепи 11 снабжен блоком 20 формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН, порт информационного обмена которого соединен с блоком 18 оптоэлектрического преобразования, а выход через выход блока 15 напольной аппаратуры приемного конца подключен к концу своей рельсовой цепи 11, при этом на вовлеченных в систему поездах установлено бортовое оборудование, включающее соединенные между собой через бортовой системный интерфейс 21 локомотива обмена цифровыми данными локомотивное устройство 22 безопасности, блок 23 измерения скорости и пройденного расстояния, блок 24 расчета допустимой скорости, дисплей 25 машиниста и локомотивное радиопередающее устройство 26, интеллектуальный программный модуль 27 управления движением по железнодорожному участку в резервном режиме, выполненный с использованием нейронных сетей, подключен к процессору 2 ЭВМ 1 центра диспетчерского контроля и управления, источники 28 резервного силового электропитания снабжены средствами защиты от вандализма, выходы источников 28 резервного силового электропитания соединены с входами резервного электропитания блоков 20 формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН.

Система интервального регулирования движения поездов функционирует следующим образом.

В предлагаемой системе важным методом контроля состояния путевых участков на перегоне является слежение в почти реальном времени за местонахождением и целостностью составов поездов и за целостностью рельсов на перегоне с помощью оптоволоконного кабеля 6, выполненного в виде комбинированного сенсорного и связевого кабеля, и электрических рельсовых цепей 11.

Блок 13 напольной аппаратуры питающего конца рельсовой цепи 11 получает из кабеля 6 через связевые оптические волокна 19 оптический сигнал управления от ЭВМ 1 центра диспетчерского контроля и управления для начала формирования силового сигнала контроля рельсовой цепи 11. Этот сигнал преобразуется блоком 17 оптоэлектрического преобразования в электрический сигнал управления передатчиком 12 электрических сигналов контроля рельсовых цепей 11, который формирует силовой электрический сигнал контроля рельсовой цепи 11, имеющий заданные параметры амплитуды, частоты и модуляции. В блоке 15 напольной аппаратуры приемного конца этой рельсовой цепи 11 происходит аналого-цифровое преобразование мгновенной амплитуды электрического сигнала на входе приемника 14 электрических сигналов контроля рельсовых цепей 11 с записью результатов в буфер его памяти. Буфер памяти освобождается во время периодической передачи пакета данных о мгновенных значениях амплитуды принимаемого сигнала из блока 15 напольной аппаратуры приемного конца в ЭВМ 1 центра диспетчерского контроля и управления. Передача данных из блока 15 напольной аппаратуры приемного конца в ЭВМ 1 центра диспетчерского контроля и управления производится через связевые оптические волокна 19 оптоволоконного кабеля 6, для чего в процессе передачи каждое цифровое мгновенное значение амплитуды электрического сигнала, хранящееся в упомянутом буфере, блоком 18 оптоэлектрического преобразования преобразуется в соответствующий оптический информационный сигнал. Принятие решений о свободности рельсовых цепей 11 осуществляет ЭВМ 1 центра диспетчерского контроля и управления, анализирующая оцифрованные мгновенные значения амплитуды сигналов на входе блоков 15 напольной аппаратуры приемного конца.

Для снижения энергопотребления передатчики 12 электрических сигналов контроля рельсовых цепей 11 включаются ЭВМ 1 центра на перегоне поочередно с частотой и длительностью включения, которые обеспечивают безопасное интервальное регулирование движения каждого из поездов, следующих по перегону. ЭВМ 1 центра выбирает различные последовательности и продолжительности включения питания силовых каскадов аппаратуры рельсовых цепей 11, передавая для этого сигналы управления в блоки 13 напольной аппаратуры питающего конца каждой рельсовой цепи 11. Также ЭВМ 1 центра непосредственно перед занятием каждым поездом очередной рельсовой цепи 11 обеспечивает передачу навстречу локомотиву поезда из напольной аппаратуры приемного конца рельсовой цепи 11 сигналы автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН. Для этого из кабеля 6, через связевые оптические волокна 19, адресный оптический сигнал управления от ЭВМ 1 центра поступает в порт информационного обмена блока 20 формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН.

Включение питания силовых каскадов аппаратуры рельсовых цепей 11 также производится при проведении различных типов периодического тестирования. Остальное время аппаратура рельсовых цепей 11 работает в режиме с малым потреблением тока, когда в блоках 13 напольной аппаратуры питающих концов и блоках 15 напольной аппаратуры приемных концов включены только маломощные каскады контроля и управления. Обмен управляющей и контрольной информацией между ЭВМ 1 центра диспетчерского контроля и управления и напольными устройствами рельсовых цепей 11 осуществляется по цифровой линии передачи данных, проходящей, в частности, через связевые оптические волокна 19 оптоволоконного кабеля 6. Оптические каналы передачи информации позволяют без ретрансляции распространяться информационным и тестовым сигналам на расстояние до 40 км.

Другим источником первичной информации о положении на перегоне поездов в предлагаемой системе, кроме сигналов электрического контроля рельсовой линии, является фиксация координат границ шумового следа от движения каждого поезда с помощью сенсорных оптических волокон 8 оптоволоконного кабеля 6. Определение координат границ шумового следа осуществляет станционный блок 9 формирования и анализа импульсных световых сигналов оптических тестовых сигналов, отраженных от мест механического воздействия на оптоволоконный кабель 6.

Этот кабель 6 позволяет зафиксировать места присутствия рядом с ним движущегося транспорта и многие другие изменения механического напряжения конструкций железнодорожного пути, вызванные изломами рельсов, сдвигами в конструкции пути, падением предметов (грузов, деревьев и т.д.), вторжением людей и животных, а также шумы, создаваемые дефектными частями движущегося подвижного состава и дефектными элементами пути.

В системе используется логический контроль проследования каждого поезда по перегону посредством контроля занятости и освобождения рельсовых цепей 11. От устройств электрической централизации в систему передается признак поезда при его отправлении на перегон. При следовании поезда по перегону система контролирует последовательное занятие рельсовых цепей 11 и параллельно осуществляет контроль занятия путевых участков с точностью до 50 метров на основании анализа акустических сигналов.

При остановках поезда на перегоне система фиксирует последнюю информацию о месте нахождения поезда и линейные размеры поезда (запоминает последний «акустический портрет»). Система логически переводит в состояние занятости рельсовые цепи на месте остановки поезда, так как акустические шумы отсутствуют. При возобновлении движения поезда после остановки, система продолжает отслеживать объект, сравнивая «акустический портрет» до остановки и после.

Станционный блок 9 формирования и анализа импульсных световых сигналов, с помощью встроенного лазерного источника когерентных импульсных световых сигналов (на чертеже не показан) периодически формирует тестовые импульсные световые сигналы, поступающие в сенсорное оптическое волокно 8. При воздействии на кристаллическую решетку оптоволокна внешних сил давления, которые передаются от оболочки кабеля 6 через внутренние элементы 7, происходит деформация этой кристаллической решетки и возникают световые импульсы обратного отражения. Для лучшего распознавания и измерения параметров отраженных сигналов последовательности формируемых импульсных световых сигналов могут отличаться частотой, длительностью и поляризацией импульсов света. События, влияющие на отражения световых сигналов в сенсорном волокне 8 оптоволоконного кабеля 6 регистрируются блоком 9, который анализирует время прихода отраженных импульсов и определяет расстояния до мест внешнего давления на кабель 6, а также формирует шумовые портреты участков распределенного внешнего механического воздействия движущихся по перегону поездов на оболочку кабеля 6. ЭВМ 1 центра диспетчерского контроля и управления осуществляет анализ пересылаемых от блока 9 данных и позволяет в почти реальном времени осуществлять мониторинг состояния железнодорожного пути и границ занимаемых на перегоне поездами.

В ЭВМ 1 центра во взаимодействии с процессором 2 функционируют программный модуль 3 моделирования поездной ситуации на перегонах, программный модуль 4 мониторинга условий движения на перегонах и программный модуль 5 комплексной обработки данных от программных модулей 3 и 4. ЭВМ 1 центра диспетчерского контроля и управления выдает разрешение на отправление второго поезда на перегон при удалении первого поезда на расстояние, обеспечивающее безопасное интервальное регулирование по комбинированным сигналам АЛСН, АЛС-ЕН. Остальное время мониторинг свободности участков перегона от состава и посторонних предметов осуществляется ЭВМ 1 центра диспетчерского контроля и управления на основании передаваемой от блока 9 информации об отраженных световых импульсов, как реакций на деформации волоконно-оптического кабеля 6 под воздействием деформаций рельсового пути на распространение по этому кабелю 6 отраженных тестовых световых импульсов.

Сигналы АЛС, передаваемые каждому поезду, учитывают запомненное в ЭВМ 1 центра диспетчерского контроля и управления место положения движущегося или остановившегося предыдущего поезда. Контроль целостности составов поездов осуществляется по отсутствию на перегоне оторвавшихся вагонов. Положение на перегоне оторвавшихся вагонов, если они появляются, фиксируется в ЭВМ 1 центра по шумовому следу пока они еще находятся в движении, а затем после их остановки по давлению, которым они воздействуют на рельсовый путь и по занятию ими рельсовых цепей 11.

Использование для интервального регулирования сигналов АЛСН и АЛС-ЕН позволяет использовать систему для управления движением локомотивов с любыми бортовыми устройствами обеспечения безопасности движения и не требует наличия на них спутниковых навигаторов. Отсутствие на перегоне необходимости в радиосвязи между удаленными поездами и радиосвязи со станцией и отсутствие необходимости в спутниковой навигации упрощает систему и делает ее лучше приспособленной к использованию в пустынных местностях с плохими условиями для технической эксплуатации напольной инфраструктуры, например, в районах крайнего Севера.

Обмен управляющей и контрольной информацией между ЭВМ 1 центра диспетчерского контроля и управления и блоками 13 напольной аппаратуры питающих концов, блоками15 напольной аппаратуры приемных концов рельсовых цепей 11 осуществляется по цифровой линии передачи данных, проходящей и через связевые оптические волокна 19 оптоволоконного кабеля 6.

Быстродействующие оптические каналы цифровой передачи данных обеспечивают поступление от ЭВМ 1 центра команд управления локомотивами по АЛСН практически в реальном времени.

Электропитание напольных электронных устройств системы может осуществляться от двух проводной линии 16 силового электропитания, проложенной в том же оптоволоконном кабеле 6 или опционально от отдельно проложенной линии.

Входы резервного электропитания блоков 20 формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН соединены с источниками 28 резервного силового электропитания, которые снабжены средствами защиты от вандализма.

Двухпроводная линия 16 обеспечивает нормальное питание блоков напольной аппаратуры питающих концов только на расстоянии 10-20 км, поэтому эта двухпроводная линия 16 поделена в кабеле 6 на секции, электропитание которых осуществляется от своих первичных источников электропитания (на чертеже не показано).

Процессор 2 ЭВМ 1 центра диспетчерского контроля и управления за счет совместной обработки данных оптических тестовых сигналов от станционного блока 9 формирования и анализа импульсных световых сигналов, а также за счет работы программного модуля 5 комплексной обработки данных, с необходимой достоверностью классифицирует события, на которые реагирует жила сенсорного оптического волокна 8 оптоволоконного кабеля 6.

Совместная обработка процессором 2 данных о занятости рельсовых цепей 11 и шумовых портретов позволяет использовать в полной мере большую информационную избыточность принимаемых первичных сигналов для проверки параметров изменения шумового следа поезда и соответствия его положения моментам времени прохождения состава поезда границ рельсовых цепей 11.

В случае, когда одна или более рельсовых цепей на одном или нескольких перегонах железнодорожного участка повреждены, интеллектуальный программный модуль 27 оперативно формирует вариант управления движением при котором неисправные рельсовые цепи отключаются и заменяются участками на которых движение поездов организованно только по низкочастотным сигналам АЛСН, которые принимаются локомотивными приемниками АЛСН, имеющимися в составе локомотивных устройств 22 безопасности каждого из поездов.

Формируемый в этом случае интеллектуальным программным модулем 27 управления движением по железнодорожному участку порядок управления блоками 20 формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН обеспечивает разделение соседних поездов интервалами безопасными с точки зрения защиты от двойного шунтирования и с точки зрения нарушения условий контрольного режима по локомотивному приемнику. Коды АЛСН, задаваемые программным модулем 27 для участков работающих в резервном режиме, увязываются с кодами АЛСН в участках с нормально работающими рельсовыми цепями в единую систему кодирования для непрерывного движения поездов по кодовым сигналам АЛСН с обеспечением безопасного интервального регулирования.

Амплитуда сигналов АЛСН низкой частоты (например, 25 Гц), задается для выбранных блоков 20 из расчетных условий надежного приема сигнала локомотивным приемником поезда в каждом участке пути, на который логически поделен перегон в резервном режиме работы. Для большей гибкости системы могут быть предусмотрены варианты алгоритмов кодирования для каждого отдельного перегона, как с увязкой, так и без увязки с поездной обстановкой на соседних перегонах.

Таким образом, предлагаемое изобретение обеспечивает повышение надежности системы.

Система интервального регулирования движения поездов, содержащая ЭВМ центра диспетчерского контроля и управления, к процессору которой подключены программный модуль моделирования поездной ситуации на перегонах, программный модуль мониторинга условий движения на перегонах, программный модуль комплексной обработки данных, принимаемых им от упомянутых программных модулей моделирования и мониторинга, оптоволоконный кабель, выполненный в виде комбинированного сенсорного и связевого кабеля, уложенного на перегоне вдоль железнодорожного пути с обеспечением передачи на его внешнюю оболочку воздействий внешних сил от конструктивных элементов железнодорожного пути и содержащего внутренние элементы механической связи между внешней оболочкой оптоволоконного кабеля и размещенными в нем сенсорными оптическими волокнами с изменяющимися оптическими параметрами при их деформации, при этом одним концом сенсорные оптические волокна соединены с первым портом сопряжения станционного блока формирования и анализа импульсных световых сигналов, второй порт сопряжения которого через станционную цифровую сеть передачи данных соединен с ЭВМ центра диспетчерского контроля и управления, на каждом перегоне путевые участки снабжены рельсовыми цепями, в каждой из которых к передающему концу рельсовой цепи подключен выход передатчика соответствующего блока напольной аппаратуры питающего конца, а к приемному концу рельсовой цепи подключен вход приемника соответствующего блока напольной аппаратуры приемного конца, при этом входы питания этих блоков напольной аппаратуры подключены к двухпроводной линии силового электропитания, размещенной в комбинированном оптоволоконном кабеле, информационные выходы передатчика и приемника блоков напольной аппаратуры через соответствующие блоки оптоэлектрического преобразования соединены со связевыми оптическими волокнами оптоволоконного кабеля, которые через станционную цифровую сеть передачи данных соединены с процессором ЭВМ центра диспетчерского контроля и управления, каждый из блоков напольной аппаратуры приемного конца рельсовой цепи снабжен блоком формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН, порт информационного обмена которого соединен с блоком оптоэлектрического преобразования, а выход через выход блока напольной аппаратуры приемного конца подключен к концу своей рельсовой цепи, при этом на вовлеченных в систему поездах установлено бортовое оборудование, включающее соединенные между собой через бортовой системный интерфейс локомотива обмена цифровыми данными локомотивное устройство безопасности, блок измерения скорости и пройденного расстояния, блок расчета допустимой скорости, дисплей машиниста и локомотивное радиопередающее устройство, отличающаяся тем, что в нее введены интеллектуальный программный модуль управления движением по железнодорожному участку в резервном режиме, который выполнен с использованием нейронных сетей и подключен к процессору ЭВМ центра диспетчерского контроля и управления, и источники резервного силового электропитания, снабженные средствами защиты от вандализма, выходы источников резервного силового электропитания соединены с входами резервного электропитания блоков формирования сигналов автоматической локомотивной сигнализации непрерывного типа АЛСН и АЛС-ЕН.



 

Похожие патенты:

Изобретение относится к средствам интервального регулирования движения поездов. Система содержит установленные на станциях и перегонах устройства (1) микропроцессорной электрической централизации и автоблокировки (ЭЦ и АБ) с рельсовыми цепями (2), на поездах (3) – комплексные локомотивные устройства (4) безопасности с приемниками (5) спутниковой радионавигации ГЛОНАСС/GPS, связанные с устройствами (1) микропроцессорной электрической централизации и автоблокировки через цифровые радиоканалы связи GSM-R и радио-блок центры 6, каждый из которых содержит сервер (7), соединенный через порт проводной связи с первым портом маршрутизатора (8), в каждом радио-блок центре (6) второй сервер (9), связан с комплексными локомотивными устройствами (4) безопасности поездов через цифровые радиоканалы связи GSM, а через порт проводной связи второй сервер (9) соединен со вторым портом маршрутизатора (8), блок (10) контроля и управления включен между портами первого (7) и второго (9) серверов, в автоматизированном рабочем месте (АРМ) (11) пользователя диспетчерского центра управления два блока (12) и (13) памяти соединены через блок (14) распределения информации с процессором (15) аппаратно-программного устройства автоматизированного рабочего места поездного диспетчера, который через приемо-передающее устройство (16) по каналу связи соединен с маршрутизаторами (8) радио-блок центров (6).

Изобретение относится к средствам автоматики и телемеханики метрополитенов и железных дорог и предназначено для управления автостопом, а также контроля его положения. Устройство управления автостопом состоит из управляющего узла (1) и контрольного узла (2).

Группа изобретений относится к системе и способу дистанционного контроля и регистрации технологических операций на транспорте. Система включает: персональную камеру видеонаблюдения, персональный абонентский терминал с монитором, приемник спутниковых навигационных сигналов GPS/ГЛОНАСС с вычислителем координат местоположения, времени и даты, пультом управления, средствами беспроводной связи с диспетчером и/или машинистом, диспетчерский терминал с монитором, пультом, видео- и аудиорегистратором и средствами беспроводной связи и дополнительный терминал на подвижном объекте с монитором, пультом, видео- и аудиорегистратором и средствами беспроводной связи.

Изобретение относится к средствам управления поездной работой участка железной дороги на основе определения его пропускной способности. Система содержит АРМ работника службы движения, включающий блок 6 ввода параметров нормативного графика движения поездов, блок 7 вычисления параметров инфраструктуры, блок 8 задания условий движения поездов, блок 9 вычисления наличной пропускной способности, блок 10 вычисления потребной пропускной способности, блок 11 сравнения вычислений, блок 12 сравнения с установленным значением, компьютер 1 АРМ работника службы движения, включающий процессор 2, с подключенными к нему первым блоком 3 памяти, блоком 4 ввода информации и монитором; центр 14 обработки данных, включающий сервер 13, блок 15 памяти с базой данных цифровой модели инфраструктуры, блок 16 генерации нормативно-справочной информации (НСИ), блок 17 памяти с базой данных нормативно-справочной информации, блок 18 формирования имитационной модели, с элементами искусственного интеллекта, блок 19 верификации с функцией обучения, блок 20 интеграции модели в систему поддержки принятия решений, блок 21 формирования вариантов пропуска поездов, программно-аппаратный блок 22 симуляции и отработки квантовых вычислений, преобразователи 23 и 24 сигналов, блок 25 формирования модели, описываемой в квантовом виде, и блок 26 формирования модели с функцией обучения.

Изобретение относится к средствам управления движением маневровыми локомотивами. Устройство включает носимый комплект составителя поездов, стационарную и бортовую части.

Изобретение относится к средствам управления движением поездов. Система содержит размещенные в блоке центрального управления два процессорных комплекта для синхронной работы по одинаковым программам, модуль встроенного аппаратного контроля процессорных комплектов, входы/выходы которого подключены к соответствующим выходам/входам процессорных комплектов, модули сбора данных с удаленных устройств управления, связанных с соответствующими им исполнительными объектами систем железнодорожной автоматики, снабженными модулями безопасных выходов для реализации команд управления исполнительными объектами, и выполненных с возможностью перевода своих исполнительных объектов в состояние защитного отключения или защитного отказа при возникновении внезапных одиночных неисправностей, а также при возникновении постепенных отказов.

Изобретение относится к средствам контроля маневровых передвижений рельсовых транспортных средств. Система содержит установленные на станции станционный приемник 2 навигационных сигналов, компьютер 3 АРМ дежурного по станции, станционную систему 12 связи, пульт 13 дистанционного управления маневровым локомотивом, управляющий вычислительный комплекс 1 маневровой автоматической локомотивной сигнализации снабжённый программно-аппаратными блоками 19, 20 симуляторов, попарно имитирующими работу блоков бортового устройства 4 управления, блоками 21 сравнения идентичности функционирования соответствующих пар блоков симуляторов, вычислительным устройством 22.

Изобретение относится к области железнодорожной автоматики и телемеханики. Используют хранящиеся на сервере данные, такие как инцидент, фактический уровень риска, допустимая интенсивность отказа технических средств 1 и 2 категорий, фактическая интенсивность отказов технических средств 1 и 2 категорий.

Изобретение относится к средствам регулирования движения поездов и маневровых составов. Способ заключается в управлении и контроле состояний станционных и перегонных напольных объектов посредством автоматизированного рабочего места дежурного по станции АРМ ДСП, состоящего из одного или нескольких мониторов и манипулятора, АРМ ДСП выполнен с возможностью обеспечения функций по контролю: состояния путевых участков станции и прилегающих к ним перегонов, положения стрелок, направления движения на путях перегона, конфигураций установленных маршрутов, направления движения и категории маршрутов, а также их замыкания и размыкания, искусственной разделки и отмены маршрутов, напряжения в питающих фидерах, неисправности устройств автоматики.

Изобретение относится к области железнодорожной автоматики. Способ предусматривает центральную вычислительную машину (ЭВМЦ) для коррекции графика движения поездов на сети железных дорог.

Изобретение относится к средствам мониторинга перегонных устройств доступа. Система включает две оконечные станции А и Б, 1+n блоков устройства доступа перегонного и волоконно-оптическую линию связи.
Наверх