Способ обогрева фибробетонных конструкций

Изобретение относится к области строительства и может быть использовано при возведении плит перекрытий, промышленных полов и прочих конструкций из фибробетонной смеси в монолитном строительстве, требующих обогрева. Способ обогрева фибробетонных конструкций включает нагрев индукционным полем фибробетонной смеси с помощью плоских катушек, соединенных последовательно и питающихся от низкочастотного генератора переменного тока. Плоские катушки располагают над обогреваемой конструкцией на расстоянии 10-15 мм, а в качестве фибрового армирования применяют металлическую фибру, при этом плоские катушки упирают на пластиковые стульчики, расположенные с шагом 1500-2000 мм. Технический результат состоит в обеспечении повышения темпа набора прочности, обеспечении равномерного прогрева обогреваемой конструкции. 2 ил., 1 табл.

 

Изобретение относится к области строительства и может быть использовано при возведении плит перекрытий, промышленных полов и прочих конструкций из фибробетонной смеси в монолитном строительстве, требующих обогрева.

Известен способ обработки бетонных смесей при возведении буронабивных свай и устройство для его осуществления, включающий нагрев окружающего грунта и бетонной смеси индукционным нагревателем, на начальной стадии которого производят виброобработку бетонной смеси в импульсном режиме путем воздействия на металлические стержни арматуры сваи электромагнитным полем, генерируемым индукционным нагревателем (RU 2270899, опуб. 27.02.2006, бюл. №6).

Недостатком данного способа является неравномерный нагрев бетонной смеси, а также невысокий темп набора бетонируемой конструкции.

Известен способ прогрева бетона, включающий установку в забетонированной конструкции электронагревателя с корпусом из закладной трубы, заполняемой текучим теплоносителем, внутрь которого погружают нагревательный элемент, на корпусе которого по мере погружения формируют крепежную штангу (RU 2522097, опуб. 10.07.2014, бюл. №19)

Недостатком данного способа является техническая сложность изготовления конструкции для обогрева и локальный обогрев бетонируемой конструкции, что не обеспечивает равномерность прогрева бетона.

Известен индукционный прогрев сталефибробетона, заключающийся в создании электромагнитного поля в сердечнике электромагнитной катушки, обмоткой которой является индуктор из медной проволоки (Е.П. Матус, Л.В. Глазкова. Индукционный прогрев сталефибробетона. Известия вузов. Строительство. №10. 2007. С. 102-106)

Недостатком данного способа является техническая сложность изготовления катушек промышленных масштабов для обогрева стыков колонн, при этом данным способом невозможно производить обогрев фибробетонных плит перекрытий и полов.

Наиболее близким к заявляемому способу обогрева фибробетонных конструкций является устройство индукционного прогрева бетонируемых монолитных железобетонных конструкций, которое может быть использовано при возведении плит, стен, колонн и других конструкций, требующих тепловой обработки (RU 2633607, опуб. 13.10.2017, бюл. №29). Прогрев и поддержание заданной температуры в процессе набора прочности бетоном производится нагревательным элементом в виде плоской индукционной катушки квадратной формы, при этом проводники расположены в диэлектрической опалубке со стороны, не соприкасающейся с бетоном.

Недостатком данного изобретения является сложность изготовления опалубки, в которую необходимо поместить плоскую индукционную катушку, большие теплопотери на нагрев как самой опалубки, так и бетонных конструкций и невысокий темп набора прочности бетоном.

Задача настоящего изобретения - повышение темпа набора прочности, равномерный прогрев обогреваемой конструкции.

Результат достигается тем, что в способе обогрева фибробетонных конструкций, включающим нагрев индукционным полем фибробетонной смеси с помощью плоских катушек, соединенных последовательно и питающихся от низкочастотного генератора переменного тока согласно изобретению плоские катушки расположены над обогреваемой конструкцией на расстоянии 10-15 мм, а в качестве фибрового армирования применяется металлическая фибра, при этом плоские катушки упираются на пластиковые стульчики, расположенные с шагом 1500-2000 мм. За счет равномерно распределенной металлической фибры по объему материала, обогрев фибробетонной конструкции происходит равномерно.

На фиг. 1 показано расположение плоских катушек во время обогрева фибробетонной конструкции. Плоские катушки 1, соединенные последовательно установлены на пластиковые стульчики 2, остающиеся в теле фибробетонной конструкции. Пластиковые стульчики установлены с шагом 1500-2000 мм и упираются на опалубку 3.

На фиг. 2 показано устройство для обогрева фибробетонных конструкций, состоящее из генератора переменного тока 4, плоских катушек 5, соединенных последовательно, магнитопроводного материала 6.

Благодаря переменному электромагнитному полю, создаваемому плоскими катушками, происходит индукционный прогрев металлической фибры, которая и прогревает забетонированную фибробетонную конструкцию.

В таблице 1 показаны результаты испытаний контрольных составов тяжелых бетонов, полученных по прототипу и заявляемому способу. В качестве контрольных образцов приняты кубы размером 100×100×100 мм. В качестве фибрового армирования принята металлическая фибра «Челябинка», дозировка фибры составила 1,5% по объему. Режим обогрева для всех составов принят следующим: 2 ч - подъем температуры до 40°С, 12 ч - изотермический прогрев, 3 ч - остывание бетона и распалубливание конструкции. Температура окружающей среды составила -15°С.

Как видно из табл. 1, заявляемый способ обогрева конструкций позволяет повысить темп набора прочности фибробетонных конструкций, при этом за счет равномерного распределения металлической фибры по объему материала, обогрев фибробетонной конструкции происходит равномерно.

Способ обогрева фибробетонных конструкций, включающий нагрев индукционным полем фибробетонной смеси с помощью плоских катушек, соединенных последовательно и питающихся от низкочастотного генератора переменного тока, отличающийся тем, что плоские катушки располагают над обогреваемой конструкцией на расстоянии 10-15 мм, а в качестве фибрового армирования применяют металлическую фибру, при этом плоские катушки упирают на пластиковые стульчики, расположенные с шагом 1500-2000 мм.



 

Похожие патенты:

Изобретение относится к строительной индустрии, а именно к устройствам для изготовления тонкостенных изделий нанесением бетонной смеси способом катапультирования на формообразующие поверхности без вибрационного воздействия. Оснастка тонкостенных изделий содержит металлоформу, включающую раму и поддон, формообразующие борта с ребрами жесткости и фиксирующие устройства.

Изобретение относится к области строительства. Опалубочный элемент выполнен с защитой от кражи.

Изобретение относится к строительной индустрии и может быть использовано в производстве железобетонных и бетонных монолитных конструкций для сооружения зданий при ускоренных темпах возведения и выполнении работ при пониженных температурах. Техническим результатом заявляемого технического решения является разработанный способ высокоскоростного набора 100% прочности бетона в монолитных конструкциях зданий за счет регулирования температурного режима нагрева бетона и мощности греющих проводов в процессе его твердения при возведении конструкции в условиях строительной площадки при низких температурах наружного воздуха.

Изобретение касается системы нагревания в виде нагревательной кассеты для элемента рамно-щитовой опалубки. Нагревательная кассета содержит нагревательное устройство и механически соединена с элементом рамно-щитовой опалубки.

Изобретение относится к области строительства и может быть использовано при возведении плит, стен, колонн и прочих конструкций монолитных зданий и сооружений, требующих тепловой обработки. Устройство индукционного прогрева бетонируемых конструкций включает в себя различное расположение проводников в диэлектрической опалубке со стороны, не соприкасающейся с бетоном, и их подключение к источнику электрической энергии.

Изобретение относится к строительству, а именно к конструкциям при выполнении которых используют опалубку. Способ изготовления выполненных неровными бетонных поверхностей включает этапы: изготовления элемента опалубки для бетонной конструкции, при этом элемент опалубки состоит из металлической решетки, выполненной из поперечных стержней и продольных стержней, и из двух покрывающих решетку с двух сторон, гибких термоусаживающихся пленок, при этом обе термоусаживающиеся пленки соединены друг с другом через отверстия решетки.

Изобретение относится к термоформам-термоопалубкам для изготовления объемных сборных и монолитных железобетонных конструкций бескаркасных зданий с предварительно напряженным железобетонным перекрытием. Термоформа-термоопалубка состоит из четырех отдельных Г-образных термоэлементов термоопалубки, собираемых, например, в объемную раму, где каждый термоэлемент термоопалубки состоит из двух частей: первая - горизонтальная часть, которая служит для изготовления части предварительно напряженного железобетонного перекрытия и состоит по сечению из нижнего силового отсека, поверх которого через термоизоляцию установлен независимый термоподдон с входными и выходными патрубками для циркуляции в нем теплоносителя (Т) с температурой нагрева Т°С=70-100°C, вторая - вертикальная часть термоэлемента, необходимая для изготовления стен объемной рамы, содержит вертикальную термоопалубку, включающую термоотсек с входными и выходными патрубками для циркуляции в нем теплоносителя с температурой нагрева Т°C=70-100°C.

Изобретение относится к области строительства и может быть использовано в качестве греющей опалубки при изготовлении монолитных железобетонных конструкций. Технической задачей, на решение которой направлено заявляемое изобретение, является упрощение изготовления конструкции опалубки, повышение надежности и качества при производстве бетонных работ.

Изобретение относится к строительным технологиям, в частности к термоактивным опалубкам, применяемым при обогреве бетонных и железобетонных конструкций в условиях низких температур. Технической задачей изобретения является снижение энергозатрат на обогрев за счет увеличения теплоотдачи щитов опалубки, равномерного распределения тепла по поверхности палубы, обеспечения рационального обогрева бетона, учета экзотермии бетона, автоматизации процесса твердения, контроля технологического процесса в режиме on-line. Термоактивная опалубка с автоматическим программным управлением процесса тепловой обработки бетона, включающая щиты опалубки с нагревательными элементами, отличающаяся тем, что щиты выполнены двухслойными: из внутреннего слоя с высокой теплопроводностью из алюминиевого сплава Д16, в плоскости которого встроен рабочий спай термодатчика и наружного слоя из материала с низкой теплопроводностью (поликарбонат); нагревательные элементы щитов опалубки выполнены в виде нагревательного нихромового провода в гибкой изоляции, расположенного в плане щита спирально в профрезерованных канавках, в смежной плоскости слоев щита; со стороны наружного слоя щита нагревательный провод защищен от потерь тепла фольгированным экраном; автоматическое программное управление обогревом выполняется с помощью блока управления, включающего контроллер ПИД регулирования процесса обогрева, датчик аварии, датчик питания, реле вкл/выкл.

Изобретение относится к промышленности строительных материалов, в частности к термоопалубкам для изготовления монолитных железобетонных конструкций с линейным и плоским предварительным напряжением. .
Наверх