Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления

Изобретение относится к способу наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающемуся в том, что с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину, на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно. 7 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам создания иммерсионных систем для оптической диагностики прозрачных объектов с высоким показателем преломления, в том числе, драгоценных камней, а также для визуализации внутренней структуры таких объектов методами микроскопии и ввода оптического излучения внутрь таких объектов, в том числе, для их лазерной модификации и для локального оптического возбуждения.

Иммерсионные составы широко используются при исследованиях различных объектов оптическими методами – прежде всего в микроскопии и спектроскопии [О.В. Егорова, Иммерсионный метод микроскопического наблюдения. Обзор. Госстандарт, Москва, Россия]. Коммерчески доступны десятки различных жидких иммерсионных составов, однако их показатель преломления практически не превышает 1,8 [https://www.cargille.com/refractive-index-liquids/]. При этом за последние несколько десятков лет не появилось принципиально новых иммерсионных жидкостей со сколько-нибудь существенно отличающимися параметрами. Большинство применяемых на данный момент составов, в том числе и с высокими показателями преломления около 1,8 – 2, были известны уже в первой половине 20-го века.

Известны иммерсионные жидкости на основе белого фосфора, йодистого метилена, органических растворителей в-бромнафталина, бромоформа, декалина, тетралина, которые имеют высокий показатель преломления (более 1,5) (Справочник химика, т.4, М.-Л.: Химия, с.821). К недостаткам этих жидкостей относится их высокая токсичность, чрезвычайная ядовитость, взрывоопасность и дороговизна.

Известны высокопреломляющие жидкости Мейровитца (Геологический словарь. - М.: Недра. Под ред. К.Н. Паффенгольца и др., 1978, т.1, 486 с.) на основе селена Se, сульфида мышьяка As2S3, бромида мышьяка AsBr3 и йодистого метилена CH2I2, а также иммерсионные жидкости на основе йодистого метилена CH2I2, содержащие белый фосфор, бромид мышьяка AsBr3, сульфид мышьяка As2S3, серу, йодид олова SnI4 и йодид сурьмы SbI3. Существуют жидкости (например, Se2Br2) с показателем преломления равным 2,1. Эти жидкости являются очень токсичными и быстро разлагаются под действием света.

Известны более дешевые и безопасные жидкости на основе йодидов металлов. Например, водный раствор йодидов калия и кадмия, и хлористого цинка с максимальным показателем преломления n=1.625 (Авторское свидетельство СССР N 948994, МПК3: C09K 3/00 и G01M 11/00, опубл. 07.08.1982). Несмотря на достаточную стабильность этой жидкости, она не позволяет получить более высокие показатели преломления одновременно с большими значениями вязкости.

Известна менее стабильная жидкость в виде водного раствора йодида цинка с показателем преломления n=1.64 (Патент РФ №2051940, МПК6: C09K 3/00, G02B 1/ 06 и G01M 1/00, опубл. 10.01.1996). Недостатком этой жидкости является недолговечность сохранения ее высоких оптических свойств, так как через несколько дней в жидкости образуются комплексы, меняющие ее оптические свойства

На данный момент не известны жидкости с показателем преломления n выше 2,1. Таким образом, невозможно их использование для прозрачных объектов с более высоким показателем преломления, например, для алмаза (n = 2,40-2,46), в видимом диапазоне спектра [Васильев Л.А., Белых З.П. Алмазы, их свойства и применение - Москва: Недра, 1983].

Известен способ глубокой пластической деформации кристаллических тел для создания оптических элементов сложной геометрии [Басиев Т.Т., Дорошенко М.Е., Кузнецов С.В., Конюшкин В.А., Осико В.В., Федоров П.П. Керамический лазерный микроструктурированный материал c двойниковой наноструктурой и способ его изготовления. Патент на изобретение № RU 2358045]. Способ глубокой пластической деформации успешно использован для разработки керамических оптических волноводов [Конюшкин В.А., Накладов А.Н., Конюшкин Д.В., Дорошенко М.Е., Осико В.В., Карасик А.Я. Керамические планарные волноводные структуры для усилителей и лазеров // Квант. электроника. 2013. Т. 43. № 1. С. 60–62]. Явление глубокой пластической деформации кристаллов под действием температуры позволяет из плоских заготовок изготавливать таким методом оптические элементы со сложной геометрией, например сферической.

Техническая проблема заявленного изобретения заключается в создании способа для наблюдения внутренней структуры прозрачных объектов с показателем преломления n более 2.1, в том числе драгоценных камней, а также способа ввода оптического излучения без искажения в такие объекты для их лазерной модификации или для локального фотовозбуждения.

Технический результат заключается в решении указанной технической проблемы.

Указанный технический результат реализуется в способе наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления заключающийся в том, что с помощью пресса, при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1 и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно, осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.

Оптическое окно создают на прозрачной пластинке после прессования путем механической обработки – шлифовки, полировки.

В пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.

Прозрачная пластинка состоит из ZnS ,GaP, Fe2O3, Cu2O, Ag3AsS3, ZnSe, TiO2, SrTiO3, GaN, Pb5[VO4]3Cl.

Процесс проводится в атмосфере потока высокочистого аргона.

Процесс проводится в вакууме при давлении 10-1 - 10-3 мм рт.ст.

Процесс приложения нагрузки на пресс длится в течение 5-300 сек.

Процесс проводится при температурах 300-1100°С.

Заявленное изобретения поясняется с использованием поясняющих материалов, где:

На фиг. 1 показана схема преломления лучей на границе объекта.

На фиг. 2 показана схема реализации заявленного изобретения в случае одной пластинки.

При использовании иммерсионного состава показатель преломления по обе стороны границы раздела одинаков, поэтому преломления лучей не происходит (фиг.1).

Отсутствие преломления на границе позволяет визуализировать внутреннюю структуру объекта, а также вводить внутрь него лучи.

Без использования иммерсионного состава лучи преломляются на неоднородной границе объекта, например, природного драгоценного камня за счет разницы показателей преломления.

Кроме алмаза объектами наблюдения могут быть другие материалы с высоким показателем преломления, для которых затруднительно использование «классических» жидких иммерсионных составов: куприт (Cu2O, n=2.848), прустит (Ag3AsS3, n=2.792), фианит (ZrO2, n=2.17), англезит (PbSO4, n= 1.877 - 1.894) и др.

Для реализации способа наблюдения внутренней структуры прозрачных объектов с использованием твердой иммерсионной среды необходимо твердое кристаллическое вещество с показателем преломления, близким к показателю преломления объекта. Например, если объектом является алмаз (показатель преломления 2,42), используют сульфид цинка ZnS, либо селенид цинка ZnSe (показатель преломления 2,6-2,4).

В качестве твердого вещества в иммерсионном составе могут также использоваться, GaP, Fe2O3, Cu2O, Ag3AsS3, ZnSe, TiO2, SrTiO3, GaN, Pb5[VO4]3Cl.

Так, иммерсионный состав, например, ZnSe, берут в форме пластинки, а затем объект 1 вдавливают в иммерсионный состав 2 с помощью пресса 3 при повышенной температуре, например 300-1100°С в атмосфере инертного газа, например высокочистого аргона, либо в вакууме. При давлении 10-1 - 10-3 мм рт.ст., либо прозрачный объект помещают между двумя пластинками иммерсионного состава и производят прессование при повышенной температуре в атмосфере инертного газа либо в вакууме.

За счет пластичности материала иммерсионного состава объект вдавливается в него с образованием на границе оптического контакта. При этом, благодаря гладкой поверхности 4, обеспечивается формирование как минимум одного оптического окна 5. Между твердым иммерсионным составом и объектом формируется оптический контакт, и проходящие лучи 6 не испытывают преломления. В верхней пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.

Внутреннюю структуру объекта наблюдают с помощью стандартных методик микроскопии сквозь сформированное оптическое окно на поверхности прозрачной пластинки, твердая иммерсионная среда которой обеспечивает такую возможность, благодаря отсутствию преломления лучей на криволинейной поверхности прозрачного объекта.

Ввод излучения внутрь прозрачного объекта производится сквозь сформированное оптическое окно на поверхности твердой иммерсионной среды (прозрачной пластинки) в виде сходящегося, параллельного, либо сходящегося пучка в зависимости от конкретной технической задачи. Благодаря отсутствию преломления лучей на криволинейной поверхности прозрачного объекта, на ней не происходит искажения вида пучка, и он продолжает распространяться внутри исследуемого прозрачного объекта практически в неизменном виде.

Так как иммерсионный состав находится в твердой фазе, не возникает сильной адгезии к поверхности прозрачного объекта. Кроме того, иммерсионный состав, как правило, менее прочен, чем объект, и поэтому он легко удаляется механически. Альтернативно он может удаляться химически с помощью растворителя, который растворяет твердую иммерсионную среду, но не влияет на исследуемый прозрачный объект.

Альтернативно, оптическое окно 5 создают на иммерсионном составе после прессования путем механической обработки – шлифовки, полировки, например, по способу RU 2338014 C2.

Альтернативно объект помещают между двумя прозрачными пластинками твердого иммерсионного состава и производят прессование при повышенной температуре.

1. Способ наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, заключающийся в том, что

с помощью пресса при повышенной температуре в атмосфере инертного газа, либо в вакууме, указанный прозрачный объект размещают на по меньшей мере одной пластине из иммерсионного порошка, в состав которого входит кристаллический материал, имеющий абсолютный показатель преломления n более 2.1, и вдавливают указанный прозрачный объект в упомянутую по меньшей мере одну пластину,

на гладкой поверхности по меньшей мере одной пластины формируют по меньшей мере одно оптическое окно,

осуществляют наблюдение внутренней структуры указанного прозрачного объекта посредством ввода оптического излучения внутрь прозрачного объекта сквозь сформированное по меньшей мере одно оптическое окно.

2. Способ по п. 1, отличающийся тем, что оптическое окно создают на прозрачной пластинке после прессования путем механической обработки – шлифовки, полировки.

3. Способ по п. 1, отличающийся тем, в пластине из кристаллического материала предварительно изготавливают цилиндрическое отверстие согласно размерам прозрачного объекта наблюдения.

4. Способ по п. 1, отличающийся тем, что прозрачная пластинка состоит из ZnS GaP, Fe2O3, Cu2O, Ag3AsS3, ZnSe, TiO2, SrTiO3, GaN, Pb5[VO4]3Cl.

5. Способ по п. 1, отличающийся тем, что процесс проводится в атмосфере потока высокочистого аргона.

6. Способ по п. 1, отличающийся тем, что процесс проводится в вакууме при давлении 10-1 - 10-3 мм рт.ст.

7. Способ по п. 1, отличающийся тем, что процесс приложения нагрузки на пресс длится в течение 5-300 сек.

8. Способ по п. 1, отличающийся тем, что процесс проводится при температурах 300-1100°С.



 

Похожие патенты:

Изобретение относится к естественно смачиваемым силикон–гидрогелевым контактным линзам. Предложена силикон-гидрогелевая контактная линза, содержащая силикон-гидрогелевый материал матрицы, который содержит полисилоксан-винильное сшивающее средство, содержащее фрагменты, представляющие собой H–доноры, силоксансодержащий винильный мономер с фрагментами, представляющими собой H–доноры, или без них и N–виниламидный мономер.

Изобретение относится к офтальмологическим устройствам, таким как контактные линзы, которые содержат привитые полимерные сети. Устройство формируется с использованием полимерной композиции, полученной способом, включающим: (a) обеспечение первой реакционноспособной композиции, содержащей: (i) инициатор полимеризации, который способен при первой активации формировать две или более свободнорадикальные группы, по меньшей мере одна из которых дополнительно может активироваться при последующей активации, (ii) одно или более этиленненасыщенных соединений и (iii) поперечно-сшивающий агент; (b) подвергание первой реакционноспособной композиции первой стадии активации так, что первая реакционноспособная композиция полимеризуется на ней с образованием поперечно-сшитой субстратной сети, содержащей ковалентно связанный активируемый инициатор свободнорадикальной полимеризации; (c) приведение в контакт поперечно-сшитой субстратной сети с композицией для прививки, содержащей одно или более этиленненасыщенных соединений, причем приведение в контакт проводят в таких условиях, что композиция для прививки проникает в поперечно-сшитую субстратную сеть; и (d) активацию ковалентно связанного активируемого инициатора свободнорадикальной полимеризации в одной или более выбранных областях поперечно-сшитой субстратной сети таким образом, что композиция для прививки полимеризуется с поперечно-сшитой субстратной сетью в выбранных областях.

Изобретение относится к оптическим терагерцовым (ТГц) материалам, конкретно к терагерцовой нанокерамике на основе твердых растворов галогенидов серебра, прозрачной в терагерцовом, миллиметровом, инфракрасном и видимом диапазонах, которая может использоваться при изготовлении волоконно-оптических устройств для медицины, инфракрасной волоконной и лазерной оптики, оптоэлектроники и фотоники.

Изобретение относится к силикон–гидрогелевым контактным линзам. Техническим результатом является относительно высокая кислородопроницаемость, относительно высокое содержание воды, относительно низкий модуль и относительно низкое содержание в процентах атомарного Si на поверхности контактной линзы.

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы AgBr - TlI характеризуется тем, что соли AgBr и TlI чистотой 99,9999 мас.

Изобретение относится к силиконовым гидрогелям, полученным из реакционных смесей, содержащих трехблочный форполимер, и изготовленным из них офтальмологическим устройствам. Предложен трехблочный форполимер, имеющий химическую структуру [A]-[B]-[C], содержащий по меньшей мере одну одновалентную реакционноспособную группу, где сегменты [A] и [C] независимо содержат полимерные сегменты, образованные из гидрофильного мономера, выбранного из гидроксизамещенных (мет)акрилатов и акриламидов, и [B] представляет собой сегмент полимерной цепи, образованный из полидиметилсилоксана с концевыми моно-н-бутилом и монометакрилоксипропилом, причем указанный трехблочный форполимер содержит по меньшей мере одну концевую одновалентную реакционноспособную группу, и где трехблочный форполимер образован с использованием теллурорганического медиатора живущей радикальной полимеризации (TERP).

Изобретение относится к устройствам дополненной реальности с размножением зрачка, в котором обеспечивают формирование многовидового изображения и формирование выходного зрачка. Указанное многовидовое изображение содержит по меньшей мере два изображения с одинаковым полем зрения, отличающиеся по длине волны и/или состоянию поляризации, или разнесенных по времени.

Способ может быть использован в отраслях, связанных с приемом и передачей электромагнитного излучения в инфракрасном и радиочастотных диапазонах. Способ заключается в том, что в заданном спектральном диапазоне сжимают спектр излучения, падающего на реальное тело от исходного источника, до заданной величины, для этого используют объемную упорядоченную структуру, с помощью которой аккумулируют энергию падающих на реальное тело фотонов в заданном спектральном диапазоне и затем переизлучают накопленную энергию фотонов в более узком заданном спектральном диапазоне.

Изобретение относится к области электротехники, а именно к способу создания твердой иммерсионной среды для наблюдения внутренней структуры прозрачных объектов с высоким показателем преломления, и может быть использовано для оптической диагностики и визуализации внутренней структуры объектов методами микроскопии путем ввода оптического излучения внутрь таких объектов, в том числе для их лазерной модификации или локального оптического возбуждения.

Изобретение относится к силиконовым гидрогелям, имеющим повышенную биосовместимость. Предложен силиконовый гидрогель, образованный из реакционной мономерной смеси, содержащей: гидроксиалкил(мет)акрилатный мономер; силиконовые компоненты, содержащие гидроксильную группу; и полиамид, причем полиамид присутствует в количестве более 15% масс.

Изобретение относится к технике проекционных систем отображения информации и может быть использовано для бортовых индикаторов на лобовом стекле коллиматорного типа. Система содержит источник изображения, находящийся в фокальной плоскости силового комбайнера, который наклонен к горизонтальной оси визирования. По первому варианту изобретения корректором аберраций изображения является оптический рефракционный компонент, который расположен в непосредственной близости от поверхности источника изображения и выполнен в виде клиновидного элемента со сферическими или асферическими поверхностями. По второму варианту изобретения корректором аберраций изображения является оптический отражательный компонент, который расположен между источником изображения и силовым комбайнером и выполнен в виде выпуклого зеркала со сферическими или асферическими поверхностями. Параметры кривизны поверхностей клиновидного элемента и зеркала обеспечивают внесение в изображение аберраций, обратных тем, которые вносит в изображение силовой комбайнер. Технический результат заключается в повышении качества изображения с упрощением конструкции коллиматорной индикаторной системы. 2 н. и 2 з.п. ф-лы, 4 ил.
Наверх