Способ приготовления шихты для производства карбида кремния

Изобретение относится к приготовлению кремнезём-углеродсодержащей шихты и может быть использовано при электротермическом производстве карбида кремния. Способ включает смешивание кремнезёмсодержащего материала с углеродистым материалом. Причем в качестве кремнезёмсодержащего материала на смешивание подают кварцит крупностью до 0,5 мм в количестве 75-80 мас.%, в качестве углеродистого материала на смешивание подают нефтяной кокс, предварительно прошедший стадию замедленного коксования при температуре 1150-1300°С в течение 0,3-0,5 ч совместно с тяжёлой смолой пиролиза в количестве 1-6 мас.%, измельчённый до крупности не более 5 мм в количестве 15-22 мас.%. Техническим результатом изобретения является повышение электрического сопротивления шихты, снижение энергетических затрат и повышение выхода товарного продукта. 2 з.п. ф-лы.

 

Способ приготовления шихты для производства карбида кремния.

Предлагаемое техническое решение относится к приготовлению кремнезём-углеродсодержащей шихты и может быть использовано при электротермическом производстве карбида кремния.

Известен способ получения карбида кремния (патент РФ № 1777312, С01В 31/36, опубликовано 30.09.1994), включающий смешение мелкодисперсного кремнеземсодержащего сырья, углерода и магния, термообработку смеси в режиме горения, кислотную обработку, в котором с целью получения продукта в виде мелкодисперсного однородного по гранулометрическому составу порошка, смешение осуществляют при следующих соотношениях компонентов, мас. %

Кремнеземсодержащие сырье 45-55
Углерод 9-11
Магний 36-44

затем смесь трамбуют до плотности 1,04-1,63 г/см3 и термообработку осуществляют при 1400-2200°С Основной недостаток известной шихты в том, что использование данной шихты приводит к необходимости поддержания более высоких температур при реализации процесса, необходимости дополнительной обработки целевого продукта раствором соляной кислоты. Повышается себестоимость товарного продукта, снижается технико-экономическая эффективность процесса.

Известен способ получения кремния (патент РФ № 2082670, С01В 33/025, опубликовано 08.02.1994), включающий электротермическое воздействие на шихту, состоящую из кремнезема и восстановительной смеси, содержащей древесный уголь, нефтяной кокс, каменный уголь и древесную щепу, в которой нефтяной кокс используют крупностью 5-8 мм в количестве 3,5-6,0% мас. от количества шихты, причем перед подачей в печь нефтяной кокс смешивают сначала с древесной щепой до получения однородной массы, затем вводят остальные компоненты шихты.

По технической сущности, по наличию сходных признаков, данное техническое решение принято в качестве ближайшего аналога.

Основные недостатки известного решения: многокомпонентность восстановительной смеси снижает эффективность процесса, требует дополнительных затрат на её подготовку. Использование в составе каменного угля может приводить к повышению содержания серы, как в процессе, так и в товарном продукте, что ухудшает экологическую ситуацию и снижает качество целевого продукта. Недостаточно высоко электросопротивление шихты - недостаточно высокая эффективность процесса.

Задачей предлагаемого технического решения является повышение технико-экономической эффективности процесса производства карбида кремния.

Техническими результатами являются: повышение электрического сопротивления шихты, снижение энергетических затрат и повышение выхода товарного продукта.

Технические результаты достигаются тем, что в способе приготовления шихты для производства карбида кремния, включающем смешивание кремнезёмсодержащего материала с углеродистым материалом, в качестве кремнезёмсодержащего материала на смешивание подают кварцит крупностью до 0,5 мм, в качестве углеродистого материала на смешивание подают нефтяной кокс, предварительно прошедший стадию замедленного коксования при температуре 1150-1300 °С в течение 0,3-0,5 часа совместно с тяжёлой смолой пиролиза, измельчённый до крупности не более 5 мм, при следующем соотношении компонентов, мас.%:

Кварцит 75-80
Нефтяной кокс 15-22
Тяжелая смола пиролиза 1-6

При этом, кварцит предварительно может быть термообработан при температурах 180-200 °С в течение 0,1-0,5 часа, а смесь шихтовых материалов может быть окускована.

Сравнительный анализ предлагаемого технического решения с решением, выбранным в качестве ближайшего аналога, показывает следующее.

Шихта по предлагаемому решению и решение по ближайшему аналогу характеризуются сходными признаками:

- кремнезёмсодержащий материал в виде кварцита;

- нефтяной кокс.

Шихта по предлагаемому решению отличается от шихты по ближайшему аналогу следующими признаками:

- на смешивание подают кварцит крупностью до 0,5 мм;

- в качестве углеродистого материала на смешивание подают нефтяной кокс, предварительно прошедший стадию замедленного коксования при температуре 1150-1300 °С в течение 0,3-0,5 часа совместно с тяжёлой смолой пиролиза;

- смешивание шихтовых материалов производят при следующем соотношении компонентов, мас.%:

Кварцит 75-80
Нефтяной кокс 15-22
Тяжелая смола пиролиза 1-6

При этом, кварцит предварительно может быть термообработан при температурах 180-200 °С в течение 0,1-0,5 часа, а смесь шихтовых материалов может быть окускована.

Наличие в предлагаемом техническом решении признаков, отличительных от признаков, характеризующих решение по ближайшему аналогу, позволяет сделать вывод о соответствии предлагаемого решения условию патентоспособности изобретения «новизна».

Сравнительный анализ предлагаемого технического решения с другими известными решениями в данной области показывает следующее.

1. Известен способ производства технического кремния (патент РФ № 2078035, С01В 33/025, 14.04.1995), включающий дозирование, смешение, загрузку и непрерывное проплавление шихты из кварцита, нефтяного кокса, древесного угля и древесной щепы, в котором нефтяной кокс перед введением в шихту обрабатывают раствором каустической соды, подсушивают до влажности 6-12% и смешивают с кварцитом, древесным углем и древесной щепой

Повышается реакционная способность кокса и шихты. Однако значительны затраты на реагентную обработку нефтяного кокса.

2. Известен способ получения ультрадисперсного порошка карбида кремния (А.с. СССР № 1555279, С01В 31/36, опубликовано 07.04.1990), включающий смешивание диоксида кремния и углеродистого компонента, взятого с избытком, брикетирование смеси и высокотемпературный нагрев её в атмосфере аргона, в котором на смешивание дополнительно подают катализатор - нитрид алюминия в количестве 0,3 - 0,5 мас.%, а нагрев смеси проводят при 1400 - 1450°С в течение 4-6 ч в атмосфере аргона, содержащей 10-20% азота. Используют смесь диоксида кремния с высокодисперсным углеродным компонентом в молярном соотношении 1:4.

3. Известен способ получения p-карбида кремния (А.с. СССР № 1706963, С01В 31/36, 28.04.1988), включающий приготовление исходной шихты из смеси кремния, углерода и добавки, выбранной из ряда (CO(NH2)2; (NH-О2C2О4 в количестве 0.5-10% от массы шихты, размещение смеси с плотностью 0,8-1,5 г/см в оболочку из материала с теплопроводностью 1-9 10 кал/см-с град., выбранного из ряда асбест, картон, бумага, слюда, и затем размещение шихты с оболочкой в замкнутый объем реакторов; термообработку шихты в газовой среде и проведение процесса в атмосфере воздуха с добавкой 10-50% аб.аргона, либо в смеси азота (60-80% об.) с оксидом углерода (40-20% об.), или в смеси азота (60-80% об.) с диоксидом углерода (40-20% об.), или аргоном (10-40% об.) под давлением 0,5-10 МПа. В данном способе порошок кремния чистотой 95 - 98% с частицами менее 12 мкм смешивают в стехиометрическом отношении с техническим углеродом П804Т и добавкой карбоната аммония в количестве 0,5 мас.% от массы кремния и углерода.

4. Известен способ получения карбидов металлов (А.с. СССР № 1820572, B22F 9/16, опубликовано 10.04.1995), включающий периодическую загрузку шихты, содержащей твердый углеродистый восстановитель и окислы металлов, и выполнение ее в руднотермической электропечи в две стадии: сначала при содержании восстановителя в окомкованной шихте на 3,0-10,0% больше стехиометрического, а затем при содержании восстановителя в шихте на 0,1-2,5% больше стехиометрического, в котором загрузку шихты на первой и второй стадиях выплавки осуществляют в соотношении 1 : (1,5-4) причем, на первой стадии выплавки на колошнике слоя шихты поддерживают температуру 400 500°С, а вторую стадию выплавки начинают при увеличении температуры на колошнике более, чем на 150°С, при этом процесс ведут при вращении ванны печи вокруг вертикальной оси со скоростью 0,5-4 об/сутки.

В процессе поиска и сравнительного анализа не выявлено технических решений, которые бы характеризовались идентичной или аналогичной совокупностью признаков с предлагаемым решением и давали бы при использовании аналогичные результаты, что позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности изобретения «изобретательский уровень».

Техническая сущность предлагаемого решения заключается в следующем.

Для повышения технико-экономической эффективности процесса шихта, используемая в процессах электротермической обработки материала, должна иметь высокое электрическое сопротивление, иметь в своём составе минимальное количество легколетучих углеродистых соединений, иметь высокую реакционную способность.

В предлагаемом решении для обеспечения вышеуказанных свойств шихтового материала в состав шихты вводят высокоуглеродистые материалы нефтепереработки - нефтяной кокс и тяжёлую смолу пиролиза. При этом, на смешивание подают нефтяной кокс, предварительно прошедший стадию замедленного коксования при температуре 1150-1300 °С в течение 0,3-0,5 часа. Такая предварительная подготовка восстановителя способствует улучшению его физико-химических показателей: повышение плотности материала, повышение его реакционной способности. Конкурентные преимущества нефтяного пека, по сравнению с каменноугольным пеком: отсутствие канцерогенных полиароматических углеводородов –(3,4 бенз(а)пиренов, IV класса опасности), минимальное содержание золы - (не более 0,8 %), достаточное высокое содержание α-фракций, низкое содержание сернистых соединений. То есть, используемый углеродистый материал в виде нефтяного кокса обладает более высокими потребительскими свойствами, как технологическими, так и более приемлем экологически. Дополнительные введение в состав углеродистого восстановителя тяжелой смолы пиролиза позволяет еще более уплотнить структуру нефтяного кокса и повысить содержание высокореакционного углерода.

Наиболее эффективный состав шихты для производства карбида кремния, в зависимости от технологических показателей процесса, при содержании углеродистого восстановителя в шихте от 16 мас. % (нефтяной кокс - 15 + 1 - тяжёлая смола пиролиза), до 28 мас. % (нефтяной кокс -22 + 6 - тяжёлая смола пиролиза). При содержании в шихте менее 16 мас. % углеродистого восстановителя снижается выход товарного продукта, при содержании в шихте более 28 мас. % углеродистого восстановителя дестабилизируется технологический процесс, повышается непроизводительный расход углеродистого восстановителя.

Использование в составе шихты мелкодисперсных материалов - кварцит крупностью до 0,5 мм, нефтяной кокс, измельчённый до крупности не более 5 мм, значительно повышает площадь и объём зоны реакции, значительно повышает электрическое сопротивление шихтового материала, и, следовательно, повышает реакционную способность и эффективность использования шихты, повышает эффективность процесса и выход товарного продукта.

Также для повышения эффективности предлагаемой шихты, при необходимости, кварцит предварительно может быть термообработан при температурах 180-200 °С в течение 0,1-0,5 часа для удаления гигроскопической влаги, а смесь шихтовых материалов может быть окускована.

1. Способ приготовления шихты для производства карбида кремния, включающий смешивание кремнезёмсодержащего материала с углеродистым материалом, отличающийся тем, что в качестве кремнезёмсодержащего материала на смешивание подают кварцит крупностью до 0,5 мм, в качестве углеродистого материала на смешивание подают нефтяной кокс, предварительно прошедший стадию замедленного коксования при температуре 1150-1300°С в течение 0,3-0,5 ч совместно с тяжёлой смолой пиролиза, измельчённый до крупности не более 5 мм, при следующем соотношении компонентов, мас.%:

кварцит 75-80
нефтяной кокс 15-22
тяжелая смола пиролиза 1-6.

2. Способ по п. 1, отличающийся тем, что кварцит предварительно термообрабатывают при температурах 180-200°С в течение 0,1-0,5 ч.

3. Способ по п. 1, отличающийся тем, что смесь шихтовых материалов окусковывают.



 

Похожие патенты:

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь ароматических углеводородов, содержащих С5-С6-циклы, способных в присутствии катализаторов присоединять атомы водорода, причем смеси содержат по крайней мере одно соединение, выбранное из ряда: флуорантен, флуорен, и по крайней мере одно соединение, выбранное из ряда: антрацен, нафталин, фенантрен, бензол, причем жидкий органический носитель водорода представляет собой смесь двух или трех компонентов, причем для бинарной системы соотношения компонентов выбраны из ряда 25:75% масс., 50:50% масс., 75:25% масс., а для системы из трех компонентов первый компонент взят в количестве 25% масс., второй компонент взят в количестве 26% масс., третий компонент - в количестве 50% масс.

Изобретение относится к формованному материалу для производства углеродных кластеров с использованием биомассы в качестве основного сырьевого материала. Способ производства материала для производства углеродных кластеров включает получение исходного материала, содержащего кальцинированную растительную биомассу и связующее; формование, предпочтительно в виде стержня, необязательный дополнительный обжиг и графитизацию исходного материала при температуре, равной 2500°С или выше.

Изобретение относится к способу получения композитных углерод-карбидокремниевых волокон со структурой "сердцевина-оболочка", сердцевина которых состоит из углерода, а оболочка образована субмикрокристаллическим карбидом кремния и практически равномерна по толщине вдоль всего волокна, основанному на неполной конверсии углеродных волокон в карбид кремния путём силицирования в газовой атмосфере, содержащей монооксид кремния (SiO), характеризующемуся тем, что силицирование проводят в условиях пренебрежимо малых градиентов концентраций силицирующего реагента газа SiO и газообразного продукта газа CO, которые реализуются при медленном отводе газов из реакционного объёма; силицирующую термическую обработку углеродных волокон осуществляют в реакторе полузакрытого типа, внутри которого предусмотрена специальная секция химического газообмена, где размещают гранулированную смесь, содержащую кремний и диоксид кремния, которая при нагревании генерирует газ SiO и связывает газ CO, образующийся в ходе конверсии материала углеродного волокна в карбид кремния; термообработку проводят в условиях непрерывной вакуумной откачки газообразных продуктов при температуре 1300-1400°С до прекращения генерирования газа SiO вследствие расходования активных компонентов реакционной смеси, загруженной в секцию химического газообмена.

Изобретение относится к способу получения водорода и жидких углеводородов бета- и паровой конверсией углеводородных газов, при котором поток исходного газового сырья подают в реактор, ионизируют электронным излучением с одновременным воздействием на него электромагнитного излучения. В поток исходного сырья вводят воду в пропорциях от 1:20 до 1:2 по массе, ионизацию производят потоком электронов с энергией от 0,3 до 10,0 МэВ при температуре смеси газа с водой от 5 до 200°С, статическом давлении от 0,1 до 0,2 МПа и средней плотности энергии электромагнитного излучения от 0,1 до 10 кВт/м³.

Изобретение относится к области получения карбида железа, в частности к области получения нанопорошков карбида железа газофазными методами, который может быть использован в таких областях, как электрохимия, катализ, биомедицина. Предложен способ получения наночастиц карбида железа со структурой «ядро-оболочка» с регулируемым содержанием металлического железа в ядре наночастицы и карбида железа в ее оболочке, включающий испарение железа из капли расплавленного железа, подвешенной в высокочастотном поле противоточного индуктора в вертикально ориентированном реакторе, захват паров железа от капли непрерывным нисходящим потоком газа-носителя, конденсацию паров железа в наночастицы железа в зоне конденсации, взаимодействие железа с углеродом в газовой фазе в наночастицах железа в зоне реакции ниже по потоку, перенос образовавшихся наночастиц карбида железа потоком газа-носителя в зону охлаждения и улавливание их фильтром, при этом источником углерода служит углеродсодержащий газ, который вводят в поток газа-носителя выше зоны реакции через кольцевой зазор в реакторе, расположенный на расстоянии более 7 мм и менее или равном 30 мм от нижнего витка противоточного индуктора, в качестве газа-носителя используют инертный газ, а потерю массы испаряемой капли расплавленного железа восполняют непрерывной подачей в нее железной проволоки.

Изобретение относится к способу получения порошка активированного угля из каменноугольного сырья путем воздействия ферромагнитных элементов во вращающемся электромагнитном поле вихревого электромагнитного аппарата, включающему загрузку, измельчение, активацию водяным паром при высокой температуре и выгрузку, причем подача воды осуществляется непосредственно в активную зону аппарата, где происходит измельчение и активация при соударении ферромагнитных активирующих элементов с каменноугольным сырьем – антрацитовой крошкой и водяным паром при температуре более 250°С, образующимся за счет превращения кинетической энергии движущихся элементов в тепловую, а выгрузка готового продукта осуществляется регулируемым потоком воздуха, выносящим фракции требуемого гранулометрического состава из активной зоны.

Изобретение относится к способу получения водородсодержащего газа, включающему две последовательные стадии. Способ характеризуется тем, что на первой стадии при температуре Т=1000-1100°С осуществляет некаталитическую матричную конверсию метана в синтез-газ в присутствии водяного пара, а на второй стадии в проточном реакторе проводят каталитическую конверсию получаемого на первой стадии синтез-газа при температуре Т=500-900°С.

Изобретение относится к производству углекислого газа, предназначенного для применения в напитках и т.п., путем термического разложения различных исходных материалов с использованием радиочастотной энергии под давлением. Капсула для системы термического разложения содержит закрытую оболочку, имеющую в себе внутреннюю полость, по меньшей мере первое отделение в упомянутой полости, содержащее способный к термическому разложению материал, содержащий бикарбонат натрия и воду.

Изобретение относится к области теплоэнергетики и может быть использовано для стабилизации капельной конденсации на поверхности металлов и её защиты от коррозии. Для формирования супергидрофобной структуры металлической поверхности сначала сферическими частицами продавливают микротекстуру с характерным размером 70-80 мкм, затем осаждают из газовой фазы наночастицы углерода размером 5-100 нм, формируя тем самым структуру с комбинированной шероховатостью.

Изобретение относится к области атомной энергетики и предназначено для использования в паротурбинных установках (ПТУ) АЭС с системой сжигания водорода в кислороде с целью перегрева рабочего тела паротурбинного цикла. Магнитный сепаратор для удаления непрореагировавшего газообразного водорода из среды водяного пара включает соленоид, рабочий канал для транспортировки очищаемого потока, основной трубопровод, выполненный с возможностью прямолинейного направления водяного пара.

Группа изобретений относится к химической промышленности и охране окружающей среды и может быть использована при изготовлении сорбентов для ликвидации аварийных разливов жидкостей, избирательной сорбции эмульгированных органических веществ, а также основы для биодеструктивных сорбентов. Сорбент на основе терморасширенного графита (ТРГ) получают в полевых условиях в устройстве, состоящем из двух сообщающихся ёмкостей 1 и 2, герметичных по отношению к окружающей среде. Ёмкость 1 содержит интеркалированный графит 4 и нагревательную смесь 3 в массовом соотношении от 9,5:0,5 до 1:2. В ёмкости 2 расположен по меньшей мере один элемент 5, инициирующий высокоэкзотермическую реакцию между компонентами нагревательной смеси, представляющий собой электрический и/или термический запал, установленный с возможностью контакта с компонентами нагревательной смеси. В результате воздействия тепла этой реакции интеркалированный графит преобразуется в ТРГ. Инициирование указанной реакции можно проводить под водой, на воздухе в закрытой ёмкости для защиты от ветра или в закрытой ёмкости, которую предварительно заполняют огнетушащим аэрозолем или газом, предотвращающим возгорание нефтепродуктов и их испарений. Интеркалированный графит и нагревательная смесь могут быть размещены внутри содержащей их ёмкости послойно, а инициирующий элемент установлен с возможностью контакта запала со слоем нагревательной смеси, при этом количество инициирующих элементов соответствует количеству слоёв нагревательной смеси. Слои могут быть отделены друг от друга инертным по отношению к ним материалом. Слои интеркалированного графита и нагревательной смеси могут быть расположены по типу конструкции «труба в трубе», при этом трубы должны быть выполнены из материала, инертного по отношению к наполняющим ёмкость компонентам. Запал может быть соединён с автономным и/или мобильным источником тока. Для повышения сорбционной ёмкости может быть использован модифицированный интеркалированный графит. Частицы нагревательной смеси могут быть капсулированы инертным по отношению к ним материалом, разлагающимся в процессе протекания указанной реакции. Полученный сорбент имеет низкую насыпную плотность и высокую сорбционную ёмкость. Устройство является компактным и простым, что экономит пространство транспортного средства, и может быть использовано в полевых условиях без ограничений. 2 н. и 13 з.п. ф-лы, 3 ил., 5 пр.
Наверх