Электрохимический способ получения мелкодисперсного порошка графита


C25B1/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2771846:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева" (СибГУ им. М.Ф. Решетнева) (RU)

Изобретение относится к электрохимическому способу получения мелкодисперсного порошка графита, заключающемуся в погружении в рабочий раствор диафрагменного электролизера коаксиально расположенных электродов - графитового анода и катода из нержавеющей стали, и подводе к ним электрического тока. Способ характеризуется тем, что на электроды воздействуют электрическим током постоянной величины при напряженности электрического поля 0,05÷0,15 кВ/м, а в качестве рабочего раствора используют 10÷35% водные растворы растворимых солей, после чего анод извлекают из электролизера для сбора частиц графита и их высушивания. Техническим результатом является возможность получения электрохимическим способом мелкодисперсного порошка графита с высокой однородностью без нарушений кристаллической структуры и с меньшими удельными энергозатратами. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к технологии получения мелкодисперсного порошка на основе графита. Мелкодисперсный порошок может быть использован в качестве основного компонента многофункциональных покрытий ракетно-космической и авиационной техники, а также в производстве огнезащитных и теплоизоляционных материалов для химической, атомной промышленности, приборостроения и теплоэнергетики.

Из существующего уровня техники известен способ получения порошка графита [Самойлов В.М., Стрелецкий А.Н. Влияние сверхтонкого измельчения на кристаллическую структуру и графитируемость углеродных наполнителей // Химия твердого тела. 2004. №2. С. 53-59], заключающийся в сверхтонком измельчении графита марки МПГ в высоконагруженной вибромельнице при дозах механической энергии 20 кДж/г, и последующей высокотемпературной графитации с дополнительными удельными энергозатратами 4 кДж/г, позволяющий получить порошок с размером частиц 0,001 мм.

Сверхтонкое точение (измельчение на вибромельнице) до размеров частиц порядка 1-4 мкм сопровождается нарушением кристаллической структуры графита: происходит увеличение межслойного расстояния, уменьшаются размеры кристаллитов. Для улучшения качества частиц и уменьшения количества дефектов после сверхтонкого точения проводится высокотемпературная графитация - термообработка тонкодисперсных порошков в атмосфере аргона при температуре до 2800°С.

Измельчение на вибромельнице - длительный и сложный технологический процесс с высокими трудозатратами, а операция термовакуумной обработки требует использования дополнительного технологического оборудования (вакуумная печь).

Электрохимические методы обработки углеграфитовых материалов хорошо известны, однако для получения мелкодисперсных графитовых порошков электролиз не применяется.

Известен способ [А. с. СССР №806334, кл. В23Р 1/04, опубл. в бюлл. №7, 1981] электрохимической обработки углеграфитовых материалов в проточном электролите на основе соли NH4NO3 с использованием постоянного технологического тока, при котором для повышения эффективности обработки, используют напряженность электрического поля в интервале 60-120 кВ/м и скорость движения электролита 0,1-0,8 м/с.

К недостаткам данного способа относятся высокие показатели удельных энергозатрат 720-1440 кДж/г.

Наиболее близким к заявленному техническому решению, принятому за прототип, является способ, описанный в авторском свидетельстве СССР №1060382 (опубл. в бюлл. №46, 1983]. Данный способ размерной электрохимической обработки деталей из углеграфитовых материалов осуществляют в проточном электролите водного раствора 8-10% метафосфата натрия при электрическом напряжении 5-60 В, напряженности электрического поля 40-60 кВ/м, скорости прокачки электролита не менее 5 м/с и давлении электролита не менее 1 кг/см2. После процесса обработки в электролите остаются крупные частицы графита в виде шлама.

При проведении обработки по данному способу требуются высокие удельные энергозатраты - 480 кДж/г.

Задачей, на решение которой направлено заявляемое изобретение является создание электрохимического способа получения мелкодисперсного порошка графита, который позволит уменьшить удельные энергозатраты, и позволит получить частицы с высокой однородностью без нарушений кристаллической структуры.

Поставленная задача решается тем, что в электрохимическом способе получения мелкодисперсного порошка графита, заключающемся в погружении в рабочий раствор диафрагменного электролизера коаксиально расположенных электродов - графитового анода и катода из нержавеющей стали - и подводе к ним электрического тока, согласно изобретению, на электроды воздействуют электрическим током постоянной величины, при напряженности электрического поля 0,05÷0,15 кВ/м, а в качестве рабочего раствора используют 10÷35% водные растворы растворимых солей, после чего анод извлекают из электролизера для сбора частиц графита и их высушивания.

Для приготовления рабочего раствора используют хлорид натрия или нитрат калия, или хлорид калия.

Технический результат, выраженный в получении электрохимическим способом мелкодисперсного порошка графита с высокой однородностью без нарушений кристаллической структуры и с меньшими удельными энергозатратами, обусловлен тем, что на коаксиально расположенные электроды (графитовый анод и катод из нержавеющей стали), погруженные в диафрагменный электролизер с 10÷35% водным раствором растворимой соли, воздействуют электрическим током постоянной величины при напряженности электрического поля диапазоном 0,05÷0,15 кВ/м, что вызывает анодное окисление и катодное восстановление графита до образования гидратированных соединений, а также процесс гидролиза с образованием молекулярного кислорода из гидроксид-ионов в околоанодном пространстве, приводящий к высвобождению углекислого газа и получению водного раствора с графитовым осадком.

Способ электрохимического получения мелкодисперсного порошка графита поясняется примером.

Коаксиально расположенные электроды: катод из нержавеющей стали на периферии и анод - графитовый электрод марки МПГ-6, размещенный в центре, помещают в диафрагменный электролизер. Между электродами устанавливают цилиндрическую перфорированную емкость из пластика, внутри которой размещена брезентовая ткань, выполняющая роль диафрагмы. Электролит - 15% водный раствор хлорида натрия - заливают в диафрагменный электролизер. На электроды воздействуют электрическим током постоянной величины после однополупериодного выпрямления с напряжением 5 В, при напряженности электрического поля 0,1 кВ/м и силе тока 130÷160 мА. Значение силы тока зависит от природы используемого электролита (хлорид натрия, нитрат калия, хлорид калия), от концентрации раствора и его температуры.

Способ основан на свойстве окисленного графита диспергироваться в процессе электрохимического окисления.

При погружении в электролит электродов и подводе к ним достаточного напряжения начинается процесс переноса электрического тока движущимися к электродам ионами в электролите и электронами во внешней цепи. Под действием электрического поля, положительно заряженные ионы мигрируют к катоду, а отрицательно заряженные ионы - к аноду. На электродах происходит переход электронов. Катод отдает электроны в раствор и в приэлектродном пространстве происходят процессы восстановления. В околоанодном пространстве протекают процессы переноса электронов от реагирующих частиц к электроду - окисление. При прохождении электрического тока через анод, происходит реакция образования иона С4+ из атомов углерода. Вокруг части ионов С4+ формируется гидратная оболочка. Образовавшиеся гидратированные ионы остаются в воде. Дальнейшее прохождение электрического тока через систему приводит к образованию молекулярного кислорода O2 из гидроксид-ионов в околоанодном пространстве. Молекулярный кислород вступает в реакцию с ионами углерода С4+ с образованием углекислого газа.

Для определения оптимальной продолжительности проведения электрохимического процесса в 15% водном растворе хлорида натрия, обеспечивающей соблюдение баланса между количеством полученного графитового порошка и удельными энергозатратами на его получение, были выполнены замеры силы тока. Для этого в цепь с катодом подключили амперметр. Результаты замеров представлены в таблице 1.

В течение первых 20 минут от начала электролиза частицы графита практически не отделяются от графитового анода, что связано с недостаточным количеством выделенного молекулярного кислорода O2 из гидроксид-ионов в околоанодном пространстве. В процессе гидролиза молекулы O2, воздействуя на поверхность анода, отделяют частицы углерода С4+ от анода. Сила тока при постоянной величине напряжения увеличивается от 130 мА в зависимости от времени обработки, в связи с увеличением количества высвободившихся положительно заряженных электронов с поверхности анода - графита. Электроны, взаимодействуя с раствором, начинают его подогревать, при этом удельное сопротивление электролита уменьшается, и, соответственно, увеличивается сила тока. При достижении силы тока значения 160 мА, соответствующего оптимальному соотношению между количеством полученного порошка и произведенными энергозатратами, напряжение с электродов необходимо снимать. Проведение электролиза при силе тока более 160 мА приводит к неоправданному повышению удельных энергозатрат.

После снятия напряжения с электродов анод извлекают из электролизера для сбора частиц графита и их высушивания при комнатной температуре.

Полученные частицы графита массой 0,065 г исследовали на автоматической измерительной системе, основанной на оптическом визирном методе, с программным обеспечением трехмерного измерения. Частицы имеют высокую однородность с размерами 0,004÷0,03 мм. Полученный порошок не требует дальнейшей обработки и готов к использованию. Удельные энергозатраты на его получение составили 69,67 кДж/г.

Таким образом, заявленный электрохимический способ получения мелкодисперсного графитового порошка позволяет получить частицы графита размером 0,004-0,03 мм, не имеющие нарушений кристаллической структуры с меньшими удельными энергозатратами.

1. Электрохимический способ получения мелкодисперсного порошка графита, заключающийся в погружении в рабочий раствор диафрагменного электролизера коаксиально расположенных электродов - графитового анода и катода из нержавеющей стали, и подводе к ним электрического тока, отличающийся тем, что на электроды воздействуют электрическим током постоянной величины при напряженности электрического поля 0,05÷0,15 кВ/м, а в качестве рабочего раствора используют 10÷35% водные растворы растворимых солей, после чего анод извлекают из электролизера для сбора частиц графита и их высушивания.

2. Способ по п. 1, отличающийся тем, что для приготовления рабочего раствора используют хлорид натрия, или нитрат калия, или хлорид калия.



 

Похожие патенты:

Изобретение относится к электрохимическим технологиям, а именно к устройствам для утилизации углекислого газа, и может найти применение для очистки воздуха рабочих помещений, сокращения газовых выбросов промышленных предприятий, охраны окружающей среды и уменьшения парникового эффекта. Представлено устройство для утилизации углекислого газа, содержащее рабочий корпус, вертикально установленные электроды, блок электрического питания, подключенный ко всем электродам.

Изобретение относится к получению наноразмерных упорядоченных частиц кремния при электролизе расплавленных солей, который может быть использован для изготовления анодов на основе кремния при создании новых безопасных литий-ионных аккумуляторов с улучшенными энергетическими характеристиками. Способ включает электролиз расплава KCl с кремнийсодержащей добавкой K2SiF6 при температуре 790-800°C.

Изобретение может быть использовано в химической промышленности. Способ получения моногидрата гидроксида лития высокой степени чистоты включает мембранный электролиз водных растворов Li2SO4, LiCl, Li2CO3 или их смесей.

Изобретение относится к устройству для электролиза воды в арктической зоне, содержащему твердополимерный электролизер с пневматически изолированными полостями для водорода и кислорода, подключенный к блоку питания и управления, а также к системе водоснабжения с запасом деионизированной воды, включающей газоотделители водорода и кислорода, соединенные с соответствующими полостями электролизера своими входными и выходными гидромагистралями и снабженные пневмомагистралями с запорными элементами.

Изобретение относится к устройству для получения продуктов электролиза из раствора хлорида щелочного металла, содержащему электрохимический реактор (1), состоящий из одной или более модульных электрохимических ячеек, которые гидравлически соединены параллельно, при этом анодная камера (5) и катодная камера (14) указанного реактора (1) разделены с помощью пористой керамической диафрагмы (4), расположенной коаксиально между электродами (2, 3) электрохимических ячеек, входное отверстие в анодную камеру (5) соединено с устройством для подачи солевого раствора (9) под давлением, выходное отверстие соединено с устройством (10) для стабилизации заданного избыточного давления в анодной камере (5), которая соединена с устройством (13) для смешивания газообразных продуктов анодной электрохимической реакции с потоком пресной воды, при этом указанная катодная камера (14) электрохимического реактора (1) представляет собой компонент католитного контура, который дополнительно содержит емкостный сепаратор (18) для отделения водорода от католита, устройство для слива избыточного количества католита из приемного контейнера сепаратора (18) и теплообменник (15) для охлаждения циркулирующего католита, при этом предложенное устройство содержит дозирующий насос (20) для добавления католита в раствор окислителя с целью регулирования его значения рН.

Изобретение относится к электролизной ячейке, содержащей анодную камеру (22) и катодную камеру (21), отделенные друг от друга ионообменной мембраной (23), причем электролизная ячейка (10) имеет анод (14), газодиффузионный электрод (24) и катодный распределитель (13) тока, причем анод (14), ионообменная мембрана (23), газодиффузионный электрод (24) и катодный распределитель (13) тока расположены в указанной последовательности соответственно в прямом контакте, соприкасаясь друг с другом, и причем на другой стороне анода (14) и/или на другой стороне катодного распределителя (13) тока расположены пружинящие удерживающие элементы (30, 40), оказывающие давление прижима на анод (14) и/или на катодный распределитель (13) тока.

Изобретение может быть использовано при получении материала для положительных электродов литий-ионных батарей. Способ получения раствора, содержащего серную кислоту и растворенный никель или кобальт, включает стадию подачи электролита, на которой подают раствор, содержащий серную кислоту и хлорид-ионы, в качестве исходного электролита в электролизер 10, внутреннее пространство которого разделено диафрагмой 12 на анодную камеру 21 и катодную камеру 22.
Изобретение относится к коррозионно-устойчивому электроду Re-Ni-P для электрохимического получения водорода на основе сплава Re-Ni, содержащего 80÷85 ат. % Re, 10÷15 ат.

Изобретение относится к области электротехники, а именно к водородонакопительному компоненту энергоблока, который обеспечивает безопасное и надежное хранение водорода, используемого для выработки электричества, и может быть использовано для снабжения электроэнергией удаленных объектов. Повышение безопасности хранения водорода и, соответственно, работы энергоблока является техническим результатом изобретения.

Изобретение относится к способу получения элементарной серы. В способе осуществляют взаимодействие водного раствора, содержащего бисульфид с окисленными сульфид-окисляющими бактериями в анаэробных условиях, в которых получают элементарную серу и восстановленные сульфид-окисляющие бактерии.

Изобретение может быть использовано при очистке сточных вод, содержащих рентгенографические контрастные агенты. Способ извлечения молекулярного йода из водного раствора, содержащего йодсодержащее ароматическое соединение и йодсодержащее неорганическое соединение, которое содержит йодид-ионы, включает этапы, на которых превращают йод упомянутого йодсодержащего ароматического соединения в молекулярный йод и собирают упомянутый молекулярный йод.
Наверх