Способ для измерения адгезии льда к поверхностям из различных материалов и исследовательский модуль для его осуществления

Изобретение относится к исследовательской технике. Сущность: на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие отрыва конуса с нанесённым покрытием от льда. Конус выполняют из сплава алюминия, причём до нанесения на поверхность конуса покрытия предварительно очищенную поверхность конуса из сплава алюминия подвергают электролитическому оксидированию в электролите, содержащем, г/л: 15-25 Na2SiO3·5Н2О и 1-2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3-1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%. Исследовательский модуль содержит конус, выполненный с возможностью нанесения на него покрытия, и коническую ёмкость. Конус выполнен из сплава алюминия, причём предварительно очищенная поверхность конуса из сплава алюминия обработана с помощью электролитического оксидирования в электролите, содержащем, г/л: 15-25 Na2SiO3·5Н2О и 1-2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3-1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%. Технический результат: возможность уменьшить количество опытов для статистической достоверности результатов оценки адгезии льда к лакокрасочным и порошковым покрытиям. 2 н.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к области исследования адгезионной прочности льда к различным покрытиям и поверхностям и может быть использовано при создании антиобледенительных материалов, в том числе в авиационной промышленности и судостроении для оценки эффективности мер, принимаемых для борьбы с обледенением поверхностей самолётов, корпусов судов, навигационного оборудования.

Прочность сцепления льда с покрытием связана с поверхностной энергией материала и соответственно с критическим поверхностным натяжением. Способы измерения адгезионной прочности контакта льда с твёрдыми поверхностями, количественно характеризующей энергию, которую нужно затратить для разделения единицы площади такого контакта, основаны на отрыве льда от поверхности. Существуют различные модификации и техническое оформление устройств для определения силы сцепления льда, такие как сдвиг намороженного льда с поверхности, кручение или вырывание изо льда цилиндрической формы с поверхностью из исследуемого материала.

Известен способ измерения адгезии льда на сдвиг к другим материалам [пат. RU №2522818, опубл. 20.07.2014, бюл. №20]. Способ осуществляют следующим образом. На обезжиренную поверхность исследуемого образца устанавливают фторопластовую втулку, в которую наливают воду и замораживают в климатической камере в течение определённого времени в зависимости от температуры. Для того чтобы вода не вытекала по краям, на втулку сверху ставят груз, имеющий продольное отверстие для заливки воды. Затем образец с примороженным к нему льдом внутри фторопластовой втулки закрепляют в зажимы универсальной испытательной машины. Испытание проводят в режиме сжатия со скоростью движения захватов 0,5 мм/мин. Давление на образец производят с помощью бруска, который прикрепляют к захвату с использованием специального фиксатора, с толщиной исследуемого образца. Адгезию льда к материалу вычисляют по формуле W=P/S, где P - сила, приложенная для сдвига льда от материала, S - площадь основания льда.

Недостатком предложенного способа является то, что деформирующая сила неравномерно воздействует на образец льда, что приводит к ошибкам в измерении.

Описан способ и устройство для испытания на прочность льда на поверхности материала [пат. CN №102269691, опубл. 19.12.2012]. Суть изобретения состоит в том, что на поверхность испытуемого образца выровненной в горизонтальном направлении дозированно наносят каплю воды, которую в дальнейшем замораживают. Скользящим вдоль поверхности образца ножом, который имеет датчик силы, удаляют обледенение. Максимальное тангенциальное усилие в процессе среза замерзшей капли используется для характеристики поверхности материала как сила адгезии льда. Преимуществом способа является простота конструкции и эксплуатации.

К недостаткам известного способа нужно отнести необходимость тщательного контроля объёма воды и параллельности поверхности материала для исключения ошибки в измерениях.

Известен подход [Гольдштейн Р.В., Епифанов В.П. «К измерению адгезии льда к другим материалам» // Вестник ПГТУ, Механика, 2011, №2, с. 28-41] для определения адгезионной прочности ледяной корки, намороженной на поверхность кабеля воздушных токопроводящих сетей, а также устройство для его осуществления. Замораживание воды осуществляют в зазоре между верхней направляющей втулкой и кабелем, имеющим геометрию цилиндрического стержня.

Недостатком данного способа является то, что при замораживании лёд расширяется и стесняется между верхней направляющей втулкой и образцом. Это приводит к завышенным значениям адгезии и, как следствие, к некорректным характеристикам антиадгезионного покрытия.

В полезной модели, заявленной в [пат. RU №125342, опубл. 27.02.2013, бюл. №6], приведено устройство для измерения сдвиговой прочности адгезии льда. Оно характеризуется тем, что тестируемый образец, представляющий собой цилиндр из исследуемого материала, одной стороной прикреплен к датчику силы, закреплённому на подвижном рычаге, а другой стороной частично погружен в сосуд с замораживаемой водой с отверстием в крышке сосуда для наполнения, причём диаметр отверстия лишь незначительно превышает диаметр цилиндра, а площадь боковой поверхности погружённой части цилиндра существенно больше площади его торцевой части. Сосуд с водой вместе с устройством для замораживания воды в нём жёстко закреплены на неподвижной станине, при этом измерение адгезионной прочности основано на определении усилия, требуемого для выдергивания образца изо льда, при приложении усилия вдоль оси цилиндра.

Недостатком метода является то, что лёд в сдавленном состоянии после заморозки между измеряемым образцом и стенками цилиндра может иметь другие физические характеристики, что найдет отражение в результатах измерения. Помимо этого, к недостатку можно отнести невозможность использования известного устройства для измерения адгезии льда на отрыв.

Описан измерительный модуль для определения силы адгезии льда [з. US №20060236778, опубл. 26.10.2006], в котором в неподвижную камеру опускают подвижную пластину, заливают определённый объём воды и замораживают под действием жидкого азота. Затем измеряют силу, необходимую для вырывания подвижной пластины из тестируемого материала и преобразуют её в силу адгезии льда к поверхности пластины.

Недостатком изобретения также является влияние бокового сжатия измерительной пластины на значения адгезии.

Результаты проведенных исследований в [Логанина В.И., Сергеева К.А. «К методике измерения адгезии льда к поверхностям» // Региональная архитектура и строительство, 2020, №1, с. 86-89] показывают, что методика оценки адгезии льда к поверхности в условиях бокового стеснения даёт немного завышенные результаты из-за различий в фактических условиях работы льда. Так, значения адгезии льда на оцинкованном железе, измеренные в режиме сдвига составили 0,043-0,070 МПа, в то время как методом отрыва получены значения 0,045-0,068 МПа, а при нанесении гидрофобного покрытия - 0,013-0,022 МПа и 0,011-0,020 МПа, соответственно. Помимо этого, различие в силе сцепления тестируемого покрытия с материалом измерительного модуля также может дополнительно влиять на оценку антиобледенительных свойств материалов.

Таким образом недостатком вышеуказанных технических решений является возможность разрушения не только по плоскости контакта льда с тестируемой поверхностью, но и с образованием трещин внутри самого льда, в результате чего становится неопределенной реальная площадь, по которой произошло разрушение контакта, а измеренное значение усилия сдвига ледяного нароста или разрыва ледяной прослойки может определяться не только прочностью адгезии льда к поверхности, но и силами сцепления внутри ледяной прослойки, наличием в ней трещин и других дефектов.

Для того чтобы минимизировать ошибки в оценке адгезионной прочности из-за неточности определения площади разрушаемого адгезионного контакта между льдом и тестируемой поверхностью предпочтения отдаются тестированию на сдвиг в отсутствии бокового стеснения, т.е. в режиме отрыва.

Известна полезная модель [пат. RU №170285, опубл. 19.04.2017, бюл. 11] с возможностью проведения измерений адгезионной прочности льда к твёрдым поверхностям из различных материалов на отрыв с возможностью формирования на них различных видов льда, а также количественной оценки затрачиваемой для разделения единицы площади такого контакта энергии. Для проведения исследований подготовленную установку с застывшим слоем льда и примерзшими к ней образцами устанавливают в рабочем пространстве между станиной и нижней нагружающей пластиной так, чтобы её рабочая поверхность была ориентирована параллельно или перпендикулярно плоскости станины. Затем регулируют высоту опорных стоек с последующим непосредственным прикреплением к образцам для испытаний. Сила пружины передаётся на тяговую штангу, а затем через шарнирные механизмы и шаровые штоки к датчику динамометра.

Основным недостатком известного устройства является то, что оно не обеспечивает постоянного объёма и равномерного распределения льда на измеряемом образце материала, что затрудняет проведение сравнительного анализа свойств в серии. Помимо этого, не описано применение данного устройства для оценки антиобледенительных свойств лакокрасочных или порошковых покрытий.

Известно устройство для испытания сцепления льда с поверхностью материала и способ его испытания [пат. CN №104568743, опубл. 14.01.2015]. Способ включает подготовку слоёв льда с равным объёмом и равной площадью контакта с использованием конического барабана в устройстве для испытаний, а затем снятие слоёв льда с использованием устройства для подъёма конического барабана; считывание максимальной нормальной силы в процессе отслаивания и отображение силы вертикального сцепления слоёв льда на поверхности материала с использованием отношения максимальной нормальной силы к площади контакта слоёв льда и образца. Устройство для испытаний и метод, раскрытые в изобретении, могут использоваться для проверки прочности вертикального сцепления слоёв льда на поверхностях различных материалов, слоёв покрытия живыми организмами.

Недостаток известного изобретения заключается в том, что на значения адгезии влияет сила сцепления между слоями льда, так как в устройстве предусмотрена возможность многократного намораживания на образец слоёв льда до требуемой толщины. Помимо этого, к недостаткам относится отсутствие информации о способе фиксации покрытия на замораживаемой пластине, как как прочность сцепления оцениваемого покрытия с пластиной может оказывать влияние на результаты испытаний.

Ещё один подход к измерению адгезии льда методом отрыва описан в изобретении [пат. CN №102628789, опубл. 19.04.2012]. Метод испытания включает следующие этапы: вертикальное расположение адгезионного зонда в определённом количестве воды на охлаждаемой поверхности образца, контактная наморозка зонда на испытательной поверхности; и вертикальное вытягивание адгезионного зонда с измерением максимальной силы и преобразование площади контакта адгезионного зонда в количественный параметр, представляющий нормализованную силу сцепления льда с испытуемым образцом. Метод и устройство имеют преимущества, заключающиеся в простоте принципа и конструкции, удобстве в эксплуатации, высокой воспроизводимости и реальном представлении нормальной прочности сцепления материалов (или покрытия) с поверхностями и льдом. Однако, существенным недостатком является маленькая площадь контакта, что требует проведения большого количества измерений для оценки реальных антиобледенительных свойств покрытия.

В качестве наиболее близкого аналога заявляемого изобретения выбрана «конус-конус» методика из [Цветников А.К. и др. «Физико-химические свойства и области применения многофункциональных покрытий на основе нанодисперсного политетрафторэтилена» // Химическая технология, 2019, Т. 20, с. 620-625]. Подход для проведения испытаний на прочность сцепления льда с исследуемой поверхностью основан на использовании стального конуса, погружённого в воду, находящуюся в конической полости стального блока. На поверхность конуса наносят покрытие, после отверждения которого конус опускают в цилиндр с деионизированной водой или с раствором NaCl различной концентрации в пределах солёности морской воды и замораживают до -15°С в термостате, установленном на разрывной машине. Замораживание проводят в течение часа, после чего осуществляют измерение усилия, необходимого для отрыва конуса от льда.

Недостатком прототипа, прежде всего, является то, что стальной конус не может быть использован для измерения адгезии льда к порошковым покрытиям. На точность измерения также влияет сила сцепления испытуемого покрытия со стальным конусом, что может отразиться на полученных значениях адгезии при слабом сцеплении покрытия с модулем. Помимо этого, в прототипе не раскрыты технические характеристики модуля и не приведены примеры осуществления.

В связи с этим техническим результатом заявляемого изобретения является разработка способа оценки адгезии льда к лакокрасочным и порошковым покрытиям с использованием исследовательского модуля, обладающего хорошей теплопроводностью для эффективной заморозки и пористостью и обеспечивающего высокую силу сцепления с исследуемыми материалами для более точного измерения антиобледенительных свойств покрытий. Преимуществом способа измерения является небольшая погрешность измерения, что позволяет уменьшить количество опытов для статистической достоверности результатов.

Технический результат достигают проведением электрохимической обработки поверхности конуса из сплава алюминия при напряжении, обеспечивающем протекание плазменных микроразрядов на границе раздела электрод-электролит, в электролите, содержащем пятиводный метасиликат натрия Na2SiO3·5Н2О и гидроксид натрия NaOH.

Схематическое изображение исследовательского модуля приведено на Фиг.1, где 1 – конус, 2 – коническая ёмкость, 3 – полость для формирования льда, 4 – крепления модуля к разрывной машине.

Способ осуществляют следующим образом. Предварительно очищенную поверхность конуса из сплава алюминия подвергают электролитическому оксидированию в электролите, содержащем, г/л: 15−25 Na2SiO3·5Н2О и 1−2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3−1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%.

Затем на поверхность конуса наносят лакокрасочное покрытие (например, сурик железный МА-15, самополирующееся противообрастающее покрытие с высоким процентом сухого остатка Seaforce 30) или порошковое покрытие (например, политетрафторэтилен ПТФЭ) методами намазывания, распыления, окунания, натирания и дают высохнуть в течение 2 часов при температуре 60°С. Конус как крышку располагают наверху конической ёмкости, заполненной водой или солевым раствором, при этом избыток жидкости выдавливается конусом из ёмкости. Далее исследовательский блок термостатируют при −15°С в течение 4 часов, устанавливают в зажимы разрывной машины и определяют значение усилия отрыва конуса от льда.

1. Способ для измерения адгезии льда к поверхностям из различных материалов, заключающийся в том, что на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие отрыва конуса с нанесённым покрытием от льда, отличающийся тем, что конус выполняют из сплава алюминия, причём до нанесения на поверхность конуса покрытия предварительно очищенную поверхность конуса из сплава алюминия подвергают электролитическому оксидированию в электролите, содержащем, г/л: 15-25 Na2SiO3·5Н2О и 1-2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3-1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%.

2. Исследовательский модуль, содержащий конус, выполненный с возможностью нанесения на него покрытия, и коническую ёмкость, отличающийся, тем, что конус выполнен из сплава алюминия, причём предварительно очищенная поверхность конуса из сплава алюминия обработана с помощью электролитического оксидирования в электролите, содержащем, г/л: 15-25 Na2SiO3·5Н2О и 1-2 NaOH, в режиме плазменных микроразрядов в монополярном гальваностатическом режиме при плотности тока 0,3-1,0 А/см2 и коэффициенте заполнения поляризующего сигнала 50%.



 

Похожие патенты:

Изобретение относится к испытательной технике. Устройство содержит захваты, выполненные в виде параллельных пластин, которые приклеены к торцам образца, и механизм их плоскопараллельного перемещения.

Группа изобретений относится к способам исследования механических свойств материалов и средствам для их осуществления и может быть использована для испытания и оценки адгезионной прочности покрытий, нанесенных на тонколистовые образцы. Сущность: испытуемое покрытие наносят на тонколистовой образец, выполненный в виде квадратной пластины, размещенной на жестком основании, фиксируют образец с покрытием, склеивая его с контробразцом цилиндрической формы, выполненным без покрытия, при этом контробразец приклеивают торцом к центру образца со стороны испытуемого покрытия, закрепляют прижимным кольцом, соединенным с основанием при помощи фиксирующих болтов, подготовленный блок шарнирно устанавливают в захватах испытательной машины таким образом, чтобы направление нагрузки растяжения совпадало с вертикальной осью цилиндрического контробразца, путем перемещения захватов подвергают его воздействию отрывной нагрузки растяжения, плавно увеличивая ее до момента отрыва испытуемого покрытия от подложки.

Изобретение относится к области машиностроения и может быть использовано для определения когезионной прочности порошковых покрытий, наносимых методом газодинамического напыления. Способ включает операции: изготовление плоского образца-подложки, нанесение исследуемого порошкового покрытия, обработку покрытия точением заподлицо с поверхностью подложки с внешней стороны, разрыв образца в разрывной машине, определение величины прочности.

Изобретение относится к механическим испытаниям покрытий, а именно к методам определения остаточных напряжений в покрытиях, созданных напылением. Техническим результатом является получение более широкой и точной информации по характеристике создаваемого покрытия напылением.

Изобретение относится к измерительной технике для определения адгезионной прочности тонких твердых покрытий на податливых подложках. Сущность: производят нагружение и внедрение алмазного пирамидального наконечника в поверхность покрытия на податливой подложке на глубину, обеспечивающую отслоение покрытия от основы при разгружении, при этом записывают экспериментальную диаграмму внедрения в виде кривых изменения нагрузки от глубины внедрения при возрастании и затем снижении нагрузки до нуля, фиксируют значения максимальной нагрузки и соответствующей ей глубины внедрения, рассчитывают эффективный модуль упругости и композиционную твердость покрытия на податливой подложке, осуществляют графически построение теоретических кривых нагружения и разгружения в виде модельной диаграммы внедрения, после чего совмещают модельную диаграмму внедрения с экспериментальной диаграммой внедрения слоистого тела, достраивают кривую разгружения в экспериментальной диаграмме внедрения, описывающую вариант экспериментальной диаграммы внедрения при когерентной связи покрытия к подложке, выявляют области в экспериментальной диаграмме внедрения, отличающиеся от аналогичных областей модельной диаграммы внедрения, анализируют природу образования этих областей, рассчитывают работу, затрачиваемую на упругое восстановление отслоившегося покрытия при разгружении, как количественную разницу в площадях отличительных областей, сопоставляют величину работы, затрачиваемой на упругое восстановление отслоившегося покрытия, с площадью фигуры в виде треугольника, одна из сторон которого образует острый угол с осью абсцисс, и по тангенсу данного угла рассчитывают по известной формуле значение адгезионной прочности покрытия.

Изобретение относится к измерительной технике и может быть использовано для измерения силы схватывания при трении ювенильных поверхностей. Сущность: обеспечивают шероховатость поверхностей образца и контртела, не превышающей Ra=0,2 мкм.

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой, и может быть использовано для оценки прочности сцепления слоев в многослойном покрытии. Способ оценки прочности сцепления многослойного покрытия заключается в нанесении слоев испытуемого покрытия на образец в виде металлической пластины, выполнении в покрытии поперечного надреза до подложки и изгиба пластины с испытуемым покрытием при расположении надреза в области растяжения при изгибе пластины и оценке прочности сцепления по результатам разрушения покрытия, надрез выполняют в зоне максимальной деформации металлической пластины при изгибе, при этом до или после деформации приготавливают микрошлиф в плоскости, перпендикулярной линии надреза, и на микрошлифе или его фотографическом изображении определяют: точку О - точку пересечения биссектрисы угла изгиба образца α, проходящей через центр надреза О', с линией, перпендикулярной поверхности покрытия в точке А1 и проходящей через точку А1, проводят из точки О линию через точку А2 и определяют угол γ1 между этой линией ОА2 и биссектрисой ОО', затем проводят из точки О линию через точку А3 и определяют угол γmax между этой линией ОА3 и биссектрисой ОО', затем проводят из точки О линию через точку А4 и определяют угол γmin между этой линией ОА4 и биссектрисой ОО', где: α - угол изгиба образца; A1 - точка начала зоны деформации пластины; А2 - точка конца участка отслоения покрытия от основы; γ1 - угол отслоения покрытия от основы; А3 - точка конца участка максимального отслоения слоя покрытия от нижележащего слоя покрытия; γmax - угол максимального отслоения слоев покрытия; А4 - точка конца участка минимального отслоения слоя покрытия от нижележащего слоя покрытия; γmin - угол минимального отслоения слоев покрытия; а по значениям углов γ1, γmax, γmin судят о прочности сцепления между слоями и между покрытием и основой, причем чем больше значение углов γ1, γmax, γmin, тем меньше прочность сцепления.

Изобретение относится к области определения механических и реологических свойств клеевых композиций. Сущность: склеенный образец размещают в обойме, испытывают его на ползучесть, регистрируют текущие значения деформации клеевой композиции и строят кривую ползучести, по которой судят о характеристиках ползучести клеевой композиции, текущее значение деформации клеевой композиции регистрируется расстоянием между линзой и стеклянной пластинкой методом колец Ньютона, наблюдаемых в монохроматическом свете с помощью цифрового микроскопа, соединенного с персональной ЭВМ (ПЭВМ) для их обработки, при нормальном к поверхности пластины падении световых лучей.

Изобретение относится к испытательной технике, в частности к определению адгезионной прочности клееполимерных дисперсно-армированных композитов с подложкой из различных материалов. Сущность: испытания проводятся путем проворачивания цилиндрического рабочего элемента, зафиксированного в затвердевшем объеме опытного композита, который сформирован в матрице, крепящейся на неподвижном основании.

Изобретение относится к области производства строительных конструкций. Устройство состоит из основания приспособления, пуансона, опоры, прижимного винта, синхронизатора усилий, пяты, прижима из двух частей, с которыми связан синхронизатор усилия, причем опора имеет отверстие прямоугольной формы, размеры которого соотносятся с размерами скалываемой доли контрольного образца, как a=1,1с; b=1,1d, где a и b - длина и ширина отверстия; с и d - длина и ширина скалываемой части контрольного образца, при этом, линия контакта поверхности пуансона со скалываемой долей контрольного образца выполнена по циклоиде как брахистохрона.

Изобретение относится к машиностроению и может быть использовано при проведении испытаний на когезионную прочность наплавленных покрытий нанесенной газопорошковой лазерной наплавкой на детали запорной арматуры в атомных энергетических установках и тепловых электростанциях для увеличения их коррозионной стойкости и износостойкости. Сущность: подготавливается три типа образцов со стальной подложкой с нанесенной на торцевые поверхности их газопорошковой лазерной наплавкой многослойных покрытий. Предварительно определяют границы покрытия и подложки, а также глубину слоя перемешивания покрытия и подложки. Формируют образцы механической обработкой, устанавливают их в приспособление для испытания на двойной срез, состоящее из корпуса, в котором перемещается на скользящей посадке нож. На первом типе образцов определяется прочность только самого покрытия на двойной срез, на втором типе образцов проводится испытание на двойной срез на границе подложки и покрытия, тем самым определяется когезионная прочность наплавки, на третьем типе образцов определяется прочность на двойной срез в зоне перемешивания наплавки и подложки. Технический результат: повышение информативности о когезионной прочности наплавленного покрытия. 1 з.п. ф-лы, 6 ил.
Наверх