Способ получения никельхромовых порошков из отходов сплава х20н80 в воде дистиллированной

Изобретение относится к порошковой металлургии, в частности к производству металлического порошка. Может применяться для получения металлического порошка из отходов сплава марки Х20Н80 в воде дистиллированной путем электроэрозионного диспергирования в дистиллированной воде при напряжении на электродах 180-200 В, ёмкости конденсаторов 50-55 мкФ и частоте следования импульсов 180-200 Гц. Обеспечивается стабилизация процесса получения порошка, повышение экологичности. 4 ил., 3 пр.

 

Изобретение относится к порошковой металлургии, в частности к производству металлических порошков. В промышленности для получения металлических порошков применяют физические и физико-химические методы.

Известен способ получения гранул методом газоструйного распыления [пат. РФ 2011474 С1, B22F 9/10, 30.04.1994], при котором в шихту индукционной плавки вводят 20-40% кусковых отходов распыляемого сплава в виде брака дисков, обрези литников, образцов от механических и жаропрочных испытаний и т. п. Полученный расплав подвергают распылению с помощью струи аргона повышенного давления. При дальнейшей переработке полученного порошка с целью выделения товарной фракции и очистки его от нежелательных примесей (шлака, керамики) около 50% гранул переходит в отходы.

Недостатком этого способа является большие потери дорогостоящего металла из-за невозможности переплава в индукционной печи образовавшихся отходов гранул. Это связано с тем, что порошковый материал из-за высокого омического сопротивления громадного количества мест точечных недостаточно плотных контактов частиц между собой, имеющих к тому же тонкую поверхностную окисную пленку, обладает недостаточной проводимостью наведенного (индукционного) вихревого тока.

Известен способ получения гранул центробежным распылением вращающейся заготовки [пат. РФ 2314179 С1, B22F 9/10, 01.10.2008], включающий индукционную плавку шихты с получением распыляемых заготовок и последующее плазменное распыление их при высоких скоростях вращения. В процессе изготовления распыляемых заготовок в шихту индукционной плавки также вводят 20-40% кусковых отходов.

Недостатком этого способа является большие потери дорогих и дефицитных металлов в отходах гранул при переработке их на электролитических никелевых комбинатах.

Наиболее близким к заявленному техническому решению является способ получения металлического порошка [пат. РФ 2332280 С2, B22F 9/14, 30.06.2006], в котором порошок получают путем зажигания разряда между двумя электродами, один из которых катод, который выполняют из распыляемого материала в виде стержня, диаметром 10≤d≤40 мм. В качестве другого электрода-анода используют электролит (техническая вода). Процесс получения порошка ведут при следующих параметрах: напряжение между электродами 500≤U≤650 В, ток разряда 1,5≤I≤3 А, расстояние между катодом и электролитом 2≤l≤10 мм. Весь процесс ведут при атмосферном давлении.

Недостатком прототипа является невозможность получения порошков-сплавов с равномерным распределением легирующих элементов, а также высокие энергетические затраты.

Заявляемое изобретение направлено на решение задачи получения порошков из отходов марки Х20Н80 в воде дистиллированной с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается тем, что порошок получают путем электроэрозионного диспергирования отходов марки Х20Н80 в воде дистиллированной при напряжении на электродах от 180…200 В, ёмкости конденсаторов 50…55 мкФ и частоте следования импульсов 180…200 Гц.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами. В зоне разряда под действием высоких температур происходит нагрев, расплавление и частичное испарение металла.

На фигуре 1 – результаты микроскопии и микроанализа порошков; на фигуре 2 – рентгеноспектральный микроанализ образца; на фигуре 3 – гранулометрический состав образцов; на фигуре 4 – рентгеноструктурный анализ образца.

Пример 1.

На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в воде дистиллированной при массе загрузки 500 г диспергировали отходы марки Х20Н80. При этом использовали следующие электрические параметры установки:

− напряжение на электродах от 160…180 В;

− ёмкость конденсаторов 45…50 мкФ;

− частота следования импульсов 160…180 Гц.

65,5 мкФ, напряжении на электродах 200 В, частоте следования импульсов 200 Гц

Данные режимы получения порошка не рекомендуются, т.к. процесс электроэрозионного диспергирования протекает не стабильно.

Пример 2.

На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в воде дистиллированной при массе загрузки 450 г диспергировали отходы марки Х20Н80. При этом использовали следующие электрические параметры установки:

− напряжение на электродах от 180…200 В;

− ёмкость конденсаторов 50…55 мкФ;

− частота следования импульсов 180…200 Гц.

Полученный порошок исследовали различными методами.

Для изучения формы и морфологии полученных порошков были выполнены снимки на растровом электронном микроскопе «QUANTA 600 FEG». На основании фигуры 1, порошок, полученный методом ЭЭД из отходов Х20Н80, в основном состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.

Анализ фазового состава частиц шихты проводили методом рентгеновской дифракции на дифрактометре «Rigaku Ultima IV» (Япония) в излучении Cu-Kα (длина волны λ = 0,154178 нм). В результате изучения концентраций элементного и минералогического состава образца, были получены результаты, представленные на фигуре 2.

Основным материалом в образце является железо, никель, хром, углерод.

Затем полученный порошок проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам (фигура 3).

Установлено, что средний размер частиц составляет 34,122 мкм, арифметическое значение – 34,12 мкм.

Анализ фазового состава полученного порошка (фигура 4) показал, что получение порошка в воде дистиллированной способствует образованию фаз карбидов Cr2О3. Основные фазами являются Fe, Ni, Cr и Cr2О3.

Пример 3.

На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в воде дистиллированной при массе загрузки 400 г диспергировали отходы марки Х20Н80. При этом использовали следующие электрические параметры установки:

− напряжение на электродах от 200…220 В;

− ёмкость конденсаторов 55…60 мкФ;

− частота следования импульсов 200…220 Гц.

Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет не стабильно

Способ получения никельхромового порошка, отличающийся тем, что порошок получают путем электроэрозионного диспергирования отходов сплава марки Х20Н80 в воде дистиллированной при напряжении на электродах 180-200 В, ёмкости конденсаторов 50-55 мкФ и частоте следования импульсов 180-200 Гц.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к электрическому контактному элементу для штекерного соединителя, который может быть использован в электрическом штекерном соединителе для электрических рабочих напряжений, превышающих 150 В. Повышение надежности и срока службы контактного элемента является техническим результатом изобретения, который достигается за счет того, что элемент содержит металлическое основание (111, 211) и нанесенный на основание (111, 211) рабочий слой (113, 213), который состоит из сплава, содержащего следующие компоненты: 82-91 масс.

Изобретение относится к области металлургии - к производству литейных жаропрочных никелевых сплавов, предназначенных для литья лопаток и других ответственных деталей газовых турбин, имеющих монокристальную структуру. Литейный жаропрочный никелевый сплав с монокристаллической структурой содержит углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, церий, лантан, иттрий, магний, отличается тем, что он дополнительно содержит гафний, марганец, кремний, скандий, титан, ниобий, цирконий при следующем соотношении компонентов, мас.%: углерод 0,002-0,1, хром 2,8-6,0, кобальт 3,0-6,5, вольфрам 2,0-5,0, молибден 1,5-3,5, алюминий 5,4-6,3, титан 0,1-1,2, ниобий 0,1-1,0, тантал 7,2-9,0, гафний 0,1-0,3 рений 4,3-7,0, бор 0,005-0,01, цирконий 0,005-0,03, церий 0,001-0,1, лантан 0,001-0,1, иттрий 0,001-0,1, магний 0,01-0,03, марганец 0,01-0,2, кремний 0,01-0,2, скандий 0,005-0,03, никель - остальное, при соблюдении следующих условий:44,2≥3,0CMo+1,6CW+2,3CTa+1,3CRe+10,0CHf, где СМо, CW, СТа, CRe, CHf - концентрации соответствующих легирующих элементов в сплаве, мас.%, иСAl/(CTi+CNb+CTa+CHf+0,57CW+0,46CMo)≥1,0 (ат.%/ат.%), где СAl, СTi, CNb, СТа, CHf, CW, СМо - концентрации соответствующих элементов в γ'-фазе, ат.%.

Изобретение относится к области металлургии - к производству литейных жаропрочных никелевых сплавов, предназначенных для литья лопаток и других ответственных деталей газовых турбин, имеющих монокристальную структуру. Литейный жаропрочный никелевый сплав с монокристаллической структурой содержит углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, рений, бор, церий, лантан, иттрий, магний, отличается тем, что он дополнительно содержит гафний, марганец, кремний, скандий, титан, ниобий, цирконий при следующем соотношении компонентов, мас.%: углерод 0,002-0,1, хром 2,8-6,0, кобальт 3,0-6,5, вольфрам 2,0-5,0, молибден 1,5-3,5, алюминий 5,4-6,3, титан 0,1-1,2, ниобий 0,1-1,0, тантал 7,2-9,0, гафний 0,1-0,3 рений 4,3-7,0, бор 0,005-0,01, цирконий 0,005-0,03, церий 0,001-0,1, лантан 0,001-0,1, иттрий 0,001-0,1, магний 0,01-0,03, марганец 0,01-0,2, кремний 0,01-0,2, скандий 0,005-0,03, никель - остальное, при соблюдении следующих условий:44,2≥3,0CMo+1,6CW+2,3CTa+1,3CRe+10,0CHf, где СМо, CW, СТа, CRe, CHf - концентрации соответствующих легирующих элементов в сплаве, мас.%, иСAl/(CTi+CNb+CTa+CHf+0,57CW+0,46CMo)≥1,0 (ат.%/ат.%), где СAl, СTi, CNb, СТа, CHf, CW, СМо - концентрации соответствующих элементов в γ'-фазе, ат.%.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных никелевых сплавов с монокристаллической структурой, используемых при изготовлении деталей ответственного назначения газотурбинных двигателей и установок, в первую очередь, рабочих и сопловых лопаток газовых турбин, работающих при температуре 1000°С и выше.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных никелевых сплавов с монокристаллической структурой, используемых при изготовлении деталей ответственного назначения газотурбинных двигателей и установок, в первую очередь, рабочих и сопловых лопаток газовых турбин, работающих при температуре 1000°С и выше.

Изобретение относится к области металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для литья деталей газовых турбин с монокристальной структурой с рабочей температурой до 1100°С и выше. Литейный жаропрочный никелевый сплав с монокристальной структурой содержит, мас.%: углерод 0,002-0,1, хром 3,0-6,0, кобальт 4,0-7,5, вольфрам 2,0-4,0, молибден 2,5-4,0, алюминий 5,5-7,0, тантал 7,0-10,0, ванадий 0,1-0,5, рений 3,5-5,0, цирконий 0,01-0,05, иттрий 0,001-0,1, лантан 0,001-0,1, церий 0,001-0,1, кремний 0,01-0,2, марганец 0,01-0,2, бор 0,005-0,03, магний 0,01-0,03, празеодим 0,01-0,1, никель – остальное, при соблюдении следующих условий: 44,8≥3,0СМо+1,6CW+2,3СТа+1,3CRe, где СМо, CW, СТа, CRe - концентрации соответствующих элементов в сплаве, мас.% и СAl/(СTa+CW+СMo)≥1,0 (ат.%/ат.%), где СAl, СTa, CW, СMo – концентрации соответствующих элементов в γ'-фазе, ат.%.

Изобретение относится к области металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для литья деталей газовых турбин с монокристальной структурой с рабочей температурой до 1100°С и выше. Литейный жаропрочный никелевый сплав с монокристальной структурой содержит, мас.%: углерод 0,002-0,1, хром 3,0-6,0, кобальт 4,0-7,5, вольфрам 2,0-4,0, молибден 2,5-4,0, алюминий 5,5-7,0, тантал 7,0-10,0, ванадий 0,1-0,5, рений 3,5-5,0, цирконий 0,01-0,05, иттрий 0,001-0,1, лантан 0,001-0,1, церий 0,001-0,1, кремний 0,01-0,2, марганец 0,01-0,2, бор 0,005-0,03, магний 0,01-0,03, празеодим 0,01-0,1, никель – остальное, при соблюдении следующих условий: 44,8≥3,0СМо+1,6CW+2,3СТа+1,3CRe, где СМо, CW, СТа, CRe - концентрации соответствующих элементов в сплаве, мас.% и СAl/(СTa+CW+СMo)≥1,0 (ат.%/ат.%), где СAl, СTa, CW, СMo – концентрации соответствующих элементов в γ'-фазе, ат.%.

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, и может быть использовано для изготовления отливок, например, рабочих и сопловых лопаток газотурбинных двигателей с равноосной структурой, работающих в условиях высоких температур и напряжений. Литейный жаропрочный сплав на никелевой основе содержит, мас.%: углерод до 0,15, хром 12,0-16,0, кобальт 12,0-16,0, молибден 3,0-5,0, алюминий 4,0-5,0, титан 3,0-4,0, бор до 0,05, цирконий до 0,05, кремний до 0,20, марганец до 0,15, по меньшей мере один элемент из группы: магний, кальций и барий до 0,10, по меньшей мере один элемент из группы: церий, празеодим и неодим до 0,10, никель - остальное.

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, и может быть использовано для изготовления отливок, например, рабочих и сопловых лопаток газотурбинных двигателей с равноосной структурой, работающих в условиях высоких температур и напряжений. Литейный жаропрочный сплав на никелевой основе содержит, мас.%: углерод до 0,15, хром 12,0-16,0, кобальт 12,0-16,0, молибден 3,0-5,0, алюминий 4,0-5,0, титан 3,0-4,0, бор до 0,05, цирконий до 0,05, кремний до 0,20, марганец до 0,15, по меньшей мере один элемент из группы: магний, кальций и барий до 0,10, по меньшей мере один элемент из группы: церий, празеодим и неодим до 0,10, никель - остальное.
Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 950 до 1160°С и давлением до 0,7 МПа.

Изобретение относится к области микроволновой и плазменной техники и может быть использовано для нанесения частиц металлов с использованием микроволнового разряда на керамические носители для получения катализаторов. Способ плазмохимического нанесения наночастиц металла на поверхность диэлектрического керамического порошка с использованием микроволнового разряда включает следующие операции.
Наверх