Импульсный нейтронный генератор

Изобретение относится к импульсному нейтронному генератору. Генератор содержит размещенные в металлическом корпусе, залитом диэлектриком, вакуумную нейтронную трубку с ее схемой питания и со схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, зарядный дроссель, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на магнитопроводе. Выход обмотки соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой. Вакуумно-герметичный корпус нейтронной трубки имеет расположенный на торце мишенный электрод, на внутренней стороне которого расположен электропроводящий цилиндр с экранирующей сеткой высокой прозрачности. С наружной стороны мишенного электрода соосно расположен кольцеобразный постоянный магнит из двух разнополюсных полуколец, формирующий поперечное относительно оси трубки магнитное поле. Техническим результатом является уменьшение габаритов и веса при повышении надежности работы импульсного нейтронного генератора. 1 ил.

 

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных генераторов.

Известен скважинный импульсный нейтронный генератор, содержащий размещенные в металлическом корпусе вакуумную нейтронную трубку с элементами электрической схемы ее питания, а так же элементы схемы формирования импульса ускоряющего напряжения, включающие накопительный конденсатор, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на магнитопроводе, выход которой соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой. Патент Российской Федерации № 2368024, МПК G21G 4/02, 20.09.2009.

Недостатком этого генератора являются ограниченный ресурс работы нейтронной трубки из-за отсутствия антидинатронной сетки, т.е. системы подавления вторичной электронной эмиссии, возникающей в результате бомбардировки мишени трубки ионами дейтерия. Следствием этого является быстрый выход из строя ионного источника трубки и малый срок службы нейтронного генератора.

Известен импульсный нейтронный генератор, содержащий размещенные в металлическом корпусе, залитом жидким диэлектриком, вакуумную нейтронную трубку с ее схемой питания и схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, сопротивление смещения, дроссель, нагрузочное сопротивление, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на магнитопроводе, выход которой соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой. Патент РФ № 174178, МПК H05Н 3/06, 05.10.2017. Данное техническое решение принято в качестве прототипа.

В этом генераторе существует система подавления вторичной электронной эмиссии, обеспечивающая запирающий потенциал отрицательной полярности по отношению к мишени с помощью электропроводящей сетки высокой прозрачности. Этот потенциал создаётся на сетке за счёт протекания тока трубки в ускоряющем промежутке. Та часть тока, которая попадает на сеточный электрод, создаёт на нём так называемое «напряжение смещения» относительно мишени с помощью резистивного сопротивления смещения, которое включается в цепь между мишенью и сеточным электродом. Величина напряжения смещения составляет несколько киловольт и достигается подбором резистора, располагаемого обычно снаружи нейтронной трубки. Кроме сложности подбора оптимальной величины сопротивления, недостатком использования сопротивления смещения является снижение эффективного значения ускоряющего напряжения в межэлектродном промежутке «инжектор ионов – мишень». Это связано с тем, что отрицательное напряжение на сеточном электроде по отношению к мишени после прохождения ионами дейтерия сеточного электрода начинает оказывать на нем по отношению к мишени тормозящее воздействие на положительно заряженные ионы.

В данном генераторе используется вакуумная нейтронная трубка, содержащая размещенные в герметичном запаянном стеклянном корпусе мишенный узел и управляемый 3-электродный искровой источник, который состоит из кольцевого анода, катода и поджигающего электрода.

Корпус нейтронной трубки представляет собой вакуумно-герметичную оболочку из двух стеклянных цилиндров, соединенных между собой металлостеклянным спаем с помощью сеточного электрода. На одном торце оболочки закреплен мишенный узел, на другом управляемый 3-электродный искровой источник. Сеточный электрод выполнен в виде V-образного кольца из ковара вакуумно-герметично спаянного с двух сторон со стеклянными цилиндрами. Выполнение четырех металлостеклянных спаев существенно усложняет конструкцию нейтронной трубки, приводит к увеличению ее длины, возможному осевому смещению двух цилиндров корпуса относительно друг друга. Кроме того, спаи стекла с коваром в области высоких напряженностей электрических полей могут являться дополнительным источником «коронных разрядов», способных привести к сквозному пробою стекла при наличии в нем даже незначительных воздушных включений в виде «пузырей». Для нейтрализации этого явления приходится ставить специальный металлический экран в виде цилиндра с радиусом закругления кромок 1-2 мм.

Сопротивление смещения намотано на отдельном изоляционном каркасе проводом с высоким удельным сопротивлением и является самостоятельным конструктивным элементом, для размещения которого требуется дополнительный объем.

Задачей изобретения является повышение надежности работы нейтронного генератора, уменьшение габаритов и веса.

Техническим результатом изобретения является уменьшение габаритов, веса, повышение надежности работы импульсного нейтронного генератора.

Технический результат достигается тем, что импульсный нейтронный генератор, содержащий размещенные в металлическом корпусе, залитом диэлектриком, вакуумную нейтронную трубку с ее схемой питания и со схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, зарядный дроссель, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на магнитопроводе, выход которой соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой, вакуумно-герметичный корпус нейтронной трубки имеет расположенный на торце мишенный электрод, на внутренней стороне которого расположен электропроводящий цилиндр с экранирующей сеткой высокой прозрачности механически и электрически с ним связанную, а с наружной стороны мишенного электрода соосно расположен кольцеобразный постоянный магнит из двух разнополюсных полуколец, формирующий поперечное относительно оси трубки магнитное поле.

Сущность изобретения поясняется чертежом, где:

1 – металлический корпус блока;

2 – нейтронная трубка;

3 – импульсный высоковольтный трансформатор;

4 – накопительный конденсатор;

5 – конденсатор ионного источника;

6 – зарядный дроссель;

7 – корпус нейтронной трубки;

8 – мишенный электрод нейтронной трубки;

9 – анодный электрод нейтронной трубки;

10 – катодный электрод ионного источника;

11 – поджигающий электрод ионного источника;

12 – электропроводящий цилиндр;

13 – экранирующая сетка;

14 – мишень;

15 – кольцеобразный постоянный магнит;

16 – чашеобразный экран;

17 – термокомпенсатор;

18 – высоковольтный проходной изолятор.

Импульсный нейтронный генератор выполнен по схеме включения нейтронной трубки с заземленным мишенным узлом. Генератор включает металлический корпус 1, нейтронную трубку 2, высоковольтную часть схемы её питания, обеспечивающую ускоряющее напряжение, с высоковольтным трансформатором 3 на металлическом сердечнике, накопительный конденсатор 4, конденсатор источника ионов 5, зарядный дроссель 6. Корпус нейтронной трубки 7 представляет собой вакуумно-герметичный стеклянный или керамический цилиндр, соединенный с одной стороны с мишенным электродом 8, а с другой стороны – с анодным электродом 9 источника ионов, содержащего соосно расположенные анод 9, катод 10 и поджиг 11. Корпус нейтронной трубки 7 изготовлен из стекла или керамики.

На внутренней стороне мишенного электрода установлен полый электропроводящий цилиндр 12 с экранирующей сеткой 13 с высокой прозрачностью, механически и электрически с ним связанную, а также мишень 14. С наружной стороны мишенного электрода соосно расположен кольцеобразный постоянный магнит 15 из двух разнополюсных полуколец, формирующий поперечное относительно оси трубки магнитное поле.

Анодный электрод 9 и полый электропроводящий цилиндр 12 образуют закрытую систему «электрод в электрод», которая минимизирует попадание плазмы и продуктов электрического разряда на внутреннюю поверхность корпуса трубки. Для выравнивания электрических полей на анодный электрод ионного источника установлен экран 16.

Для обеспечения электрической прочности и улучшения теплопередачи от внутренних источников энергии во внешнюю среду блок залит жидким диэлектриком, имеющим хорошие электроизоляционные свойства. Для компенсации температурного изменения объёма жидкого диэлектрика установлен термокомпенсатор 17.

Внешнее питание и импульсы запуска подают через керамические проходные изоляторы 18.

Генератор работает следующим образом.

При срабатывании коммутирующего элемента (на чертеже не показан) накопительный конденсатор 4, заряженный до нескольких кВ, разряжается через первичную обмотку трансформатора 3. На вторичной обмотке формируется импульс напряжения положительной полярности 100–150 кВ длительностью несколько мкс, который подается на катодный электрод 10 нейтронной трубки. При подаче импульса «поджига» ионного источника происходит разряд конденсатора ионного источника 5 через анод 9 и катод 10. В результате десорбции дейтерия и его ионизации под действием дугового разряда образуются ионы дейтерия, которые бомбардируют мишень 14 нейтронной трубки 2. На мишени в результате реакции 1Н2 + 1Н3 → 2Не4 + n образуются нейтроны с энергией 14 МэВ и вторичные электроны.

Ток вторичных электронов является паразитным и приводит к нагреванию электродов ионного источника, снижая ресурс работы нейтронной трубки.

Предлагаемый способ подавления вторичной эмиссии электронов с мишени связан с созданием магнитного поля в области мишени, вектор напряжённости которого направлен перпендикулярно траекториям вторичных электронов и оси нейтронной трубки. Выбиваемые из мишени 14 вторичные электроны попадают в эквипотенциальный объем, образованный электропроводящим цилиндром 12 с экранирующей сеткой 13 и мишенью 14, и возвращаются магнитным полем на мишень, что предотвращает их попадание в ускорительный промежуток. Преимущество этого способа перед прототипом заключается в том, что при использовании постоянных магнитов нет энергетических затрат на подавление электронов и нет снижения энергии ионов в процессе их ускорения к мишени, как это имеет место в прототипе.

Эффективность предлагаемого технического решения была проверена в результате сравнительных испытаний на одних и тех же вакуумных нейтронных трубках. Эксперимент проверен с измерением выхода нейтронов при подавлении вторичных электронов с помощью постоянного магнита и с помощью антидинатронной сетки и сопротивления смещения. Результаты идентичны в пределах погрешности измерения.

Благодаря такому техническому решению вследствие отсутствия антидинатронной сетки и сеточного электрода на корпусе нейтронной трубки отпадает необходимость изготовления сопротивления смещения как самостоятельного конструктивного элемента на отдельном каркасе, как в прототипе, что приводит к упрощению конструкции нейтронной трубки и уменьшению веса генератора. За счёт объёма, образовавшегося вследствие исключения сопротивления смещения на отдельном каркасе, существенно уменьшаются габариты генератора.

Также исключение сопротивления смещения из конструкции позволило улучшить теплоотвод с мишени трубки, таким образом, существенно улучшилось охлаждение мишени и уменьшилось число контактирующих элементов электрической схемы, что привело к повышению надежности работы генератора по сравнению с прототипом.

Импульсный нейтронный генератор, содержащий размещенные в металлическом корпусе, залитом диэлектриком, вакуумную нейтронную трубку с ее схемой питания и со схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, зарядный дроссель, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на магнитопроводе, выход которой соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой, отличающийся тем, что вакуумно-герметичный корпус нейтронной трубки имеет расположенный на торце мишенный электрод, на внутренней стороне которого расположен электропроводящий цилиндр с механически и электрически связанной с ним экранирующей сеткой высокой прозрачности, а с наружной стороны мишенного электрода соосно расположен кольцеобразный постоянный магнит из двух разнополюсных полуколец, формирующий поперечное относительно оси трубки магнитное поле.



 

Похожие патенты:

Изобретение относится к накопителю холодных нейтронов. Накопитель нейтронов, испускаемых импульсным источником, имеет два замедлителя нейтронов.

Изобретение относится к герметизированному источнику нейтронов, который содержит металлокерамические проволочные источники, такие как проволоки с калифорнием-252/палладием. Герметизированный источник нейтронов включает первую капсульную конструкцию, включающую в себя блочную конструкцию.

Группа изобретений относится к медицине. Система формирования пучка нейтронов для системы нейтрон-захватной терапии содержит: блок формирования пучка, содержащий вход пучка, приемную полость, замедлитель, смежный с концом приемной полости, отражатель, окружающий замедлитель, радиационный экран, расположенный в блоке формирования пучка, и выход пучка, при этом замедлитель выполнен с возможностью замедления нейтронов, генерируемых из мишени в область энергии надтепловых нейтронов, причем отражатель выполнен с возможностью направления отклоняющихся нейтронов обратно к замедлителю для повышения интенсивности пучка надтепловых нейтронов, при этом радиационный экран выполнен с возможностью экранирования утекающих нейтронов и фотонов для снижения дозы на здоровую ткань в необлучаемой области; вакуумную трубку, расположенную в приемной полости; мишень, расположенную на конце вакуумной трубки, причем мишень выполнена с возможностью вступления в ядерную реакцию с пучком заряженных частиц, входящим через вход пучка, для генерации нейтронов, образующих пучок нейтронов, при этом пучок нейтронов испускается из выхода пучка и определяет ось пучка нейтронов; по меньшей мере одно охлаждающее устройство, расположенное в блоке формирования пучка, при этом охлаждающее устройство выполнено с возможностью охлаждения мишени; и по меньшей мере один приемный трубопровод, расположенный в блоке формирования пучка, для вмещения охлаждающего устройства; причем между охлаждающим устройством и внутренней стенкой приемного трубопровода размещен наполнитель.

Изобретение относится к импульсному нейтронному генератору. Импульсный нейтронный генератор содержит в герметичном металлическом корпусе вакуумную нейтронную трубку с трехэлектродным источником ионов с анодом, катодом и поджигом, а также схему его питания и формирования импульса ускоряющего напряжения.

Изобретение относится к блоку излучателя нейтронов. Устройство содержит в металлическом герметичном корпусе, залитом жидким диэлектриком, следующие элементы: нейтронную трубку, схему формирования ускоряющего напряжения, включающую схему умножения с высоковольтным трансформатором на входе, температурный компенсатор.

Изобретение относится к медицинской технике, а именно к устройствам для нейтронно-захватной терапии. Облучатель для нейтронно-захватной терапии содержит вход волоконного пучка, мишень, замедлитель, примыкающий к указанной мишени, отражатель вокруг указанного замедлителя, поглотитель тепловых нейтронов, примыкающий к указанному замедлителю, массив биологической защиты реактора и выход волоконного пучка, размещенные в облучателе, мишень служит для работы с протонными пучками, выведенными от входа волоконного пучка с возникновением атомной реакции для получения нейтронов, нейтроны образуют пучки нейтронов, ось пучков нейтронов направлена на замедлитель, который замедляет нейтроны, выделенные от мишени, направленные в активную зону эпитепловых нейтронов, между замедлителем и отражателем имеется воздушный или вакуумный зазор, с возможностью прохождения по нему пучка нейтронов для усиления интенсивности пучка эпитепловых нейтронов, при этом мишень отделена от зазора замедлителем и зазор образован отражателем, замедлителем и поглотителем тепловых нейтронов, отклоненные нейтроны будут отражены обратно по оси, чтобы повысить интенсивность пучка эпитепловых нейтронов, поглотитель тепловых нейтронов поглощает тепловые нейтроны, чтобы избежать чрезмерных поверхностных доз при терапии прямо под поверхностными нормальными тканями, массив биологической защиты реактора предназначен для защиты от утечки нейтронов и фотонов, чтобы уменьшить дозу для нормальных тканей в необлученных зонах.

Изобретение относится к устройству для получения нейтронов с использованием частиц высоких энергий и может быть использовано при изготовлении компактных источников нейтронного излучения. Устройство источника нейтронов содержит источник нейтронов, помещённый в герметизированный контейнер, в котором источник нейтронов выполнен в виде конструкции с многослойной структурой, включающей в себя слои-изоляторы, выполненные из материала, имеющего лёгкие ядра, плотно контактирующие по краевым участкам слоёв, образуя герметичное соединение и слой-излучатель возбуждающих α-частиц, размещенный между упомянутыми слоями-изоляторами, и выполненный из α-активного материала в смеси с материалом, имеющим лёгкие ядра, способные к реакции α->n.

Изобретение относится к фотонейтронным источникам. Фотонейтронный источник включает канал для ввода пучка электронов, облучаемый пучком электронов с энергией 6-8 МэВ, е-γ-конвертер из вольфрама толщиной 0,1 см, две фотонейтронные мишени из бериллия, полость для облучения образцов, замедлитель быстрых нейтронов из полиэтилена и биологическую защиту из борированного полиэтилена для поглощения тепловых и замедления и поглощения быстрых нейтронов, вылетающих наружу из источника.

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на металлическую основу мишени и насыщают его тритием, подают газовую среду к мишени и проводят в ней термическую обработку мишени и удаляют газовую среду от мишени.

Использование: для излучения импульсов нейтронного и рентгеновского излучения. Сущность изобретения заключается в том, что скважинный излучатель нейтронов в охранном кожухе содержит вакуумную нейтронную трубку со схемой питания, состоящую из двух высоковольтных трансформаторов, накопительного конденсатора, схемы формирования ускоряющего импульса, выполненной по биполярной схеме, блока питания с коммутатором и схемой формирования импульса запуска коммутатора, при этом на мишенном и анодном электродах нейтронной трубки установлены теплопроводящие изоляторы, выполненные в виде полых цилиндров с кольцевыми проточками, имеющие тепловой контакт с электродами нейтронной трубки и внутренней поверхностью охранного кожуха.

Изобретение относится к импульсному нейтронному генератору. Генератор содержит размещенные в металлическом корпусе, залитом жидким диэлектриком, вакуумную нейтронную трубку со схемой питания ионного источника и схемой формирования импульса ускоряющего напряжения, включающей накопительный конденсатор, сопротивление смещения, дроссель, нагрузочное сопротивление, высоковольтный трансформатор с многорядной вторичной обмоткой, выполненной на замкнутом магнитопроводе. Выход обмотки соединен с чашеобразным экраном и расположенной в нем вакуумной нейтронной трубкой, вакуумно-герметичный корпус нейтронной трубки выполнен в виде двух полых цилиндров из керамического материала с объемным электрическим сопротивлением, величина которого определяется сопротивлением нагрузки, и сопротивлением смещения. Причем один цилиндр - сопротивление нагрузки вакуумно-герметично присоединено к анодному и сеточному электродам нейтронной трубки, а другой цилиндр - сопротивление смещения - к сеточному и мишенному электродам и имеют с ними электрический и тепловой контакт. Техническим результатом является уменьшение габаритов и веса, повышение надежности работы импульсного нейтронного генератора. 1 ил.
Наверх