Способ обогащения железных руд

Предложенное изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении полезных ископаемых, разделяемые компоненты которых различаются по плотности, удельной магнитной восприимчивости и флотируемости, например, железных руд различного состава. Способ обогащения железных руд включает классификацию, измельчение, магнитно-гравитационное концентрирование в движущемся потоке, обработку реагентами. Обработку пульпы производят катионным реагентом-собирателем Flotigam EDA при расходе от 100 до 300 г/т и депрессором, в качестве которого используют декстрин при расходе от 150 до 250 г/т, время обработки от 3 до 7 минут. Далее пульпу аэрируют и подают под давлением по касательной относительно внутренних стенок корпуса гидроциклона, в котором осуществляют магнитно-гравитационное концентрирование и флотацию с получением железного концентрата и хвостов. В питающем патрубке гидроциклона пульпу намагничивают постоянным магнитным полем с последовательно увеличивающейся от 0 до 0,1 Тл индукцией. Технический результат - повышение эффективности разделения железных руд и повышение удельной производительности процесса. 4 табл.

 

Изобретение относится к области обогащения полезных ископаемых и может быть использовано при обогащении полезных ископаемых, разделяемые компоненты которых различаются по плотности, удельной магнитной восприимчивости и флотируемости, например, железных руд различного состава.

Известен способ обогащения железной руды (патент РФ № 2307710, опубл. 10.10.2007), в котором измельченный в первой стадии измельчения материал, предназначенный для первой стадии мокрой магнитной сепарации, подают в аппарат, где его разделяют по плотности на тяжелый песковый и легкий сливной продукт, после чего легкий сливной продукт подвергают магнитной сепарации с получением магнитного и немагнитного продуктов, при этом немагнитный продукт выводят из процесса и сбрасывают в отвал, а магнитный продукт направляют в питание мельницы.

Основные недостатки способа в сравнительно низкой эффективности разделения особенно в случае обогащения мелковкрапленных материалов, разделяемые компоненты которых слабо различаются по плотности и по удельной восприимчивости.

Известен способ о способ мокрого магнитного обогащения тонковкрапленных смешанных железных руд (патент РФ № 2147936, опубл. 27.04.2000), который включает дробление исходной руды, измельчение дробленого продукта, магнитную гидросепарацию измельченной руды, выделение отходов обогащения магнитной гидросепарацией. Отходы магнитной сепарации песков гидросепараторов постоянно возвращают в голову процесса в виде циркулирующей нагрузки до тех пор, пока они не уйдут из процесса в виде слива магнитных гидросепараторов. Питание магнитных сепараторов подвергают каскадному перемешиванию в магнитных полях. Изобретение повышает извлечение металла в концентрат.

Основные недостатки способа в низкой эффективности разделения особенно в случае обогащения мелковкрапленных материалов, разделяемые компоненты которых слабо различаются по плотности и по удельной восприимчивости.

Известен способ обогащения железных руд сложного вещественного состава (патент РФ № 2432207, опубл. 27.10.2011), который включает измельчение исходного материала, его классификацию на тонкую и крупную фракции, измельчение крупной фракции, обесшламливание и магнитную сепарацию тонкой фракции с получением магнетитового концентрата и хвостов мокрой магнитной сепарации. Первоначально хвосты подвергают первичной гидравлической классификации в гидроциклонах с выделением крупных фракций песков и тонких фракций слива, затем тонкие фракции слива первичной гидравлической классификации подвергают вторичной гидравлической классификации в гидроциклонах в одну или несколько стадий с выделением тонких фракций слива и воды в хвосты, а крупные фракции сгущенных песков подвергают контрольной гидравлической классификации в одну или несколько стадий с направлением тонких фракций слива и воды в хвосты. Пески первичной и контрольной гидравлической классификации подвергают механической классификации на просеивающих поверхностях высокочастотных вибрационных грохотах в режиме виброкипения и сегрегации минеральных фракций по объемной плотности и крупности с повышением массовой доли железа общего в подрешетном продукте, при этом надрешетные продукты механической классификации песков первичной и контрольной гидравлической классификации направляют в хвосты, а подрешетные продукты объединяют, усредняют в режиме перемешивания и направляют на флотацию или подвергают разделению на винтовых сепараторах с получением гематитового концентрата и хвостов.

Основные недостатки способа в сравнительно низкой эффективности разделения особенно в случае обогащения мелковкрапленных материалов, разделяемые компоненты которых слабо различаются по плотности и по удельной восприимчивости.

Известен способ обогащения железных руд (патент РФ № 2500822, опубл. 10.12.2013), который включает дробление и измельчение рудного сырья, ее селективную флокуляцию, дешламацию и магнитную сепарацию песков дешламации с получением железорудного концентрата, при измельчении рудного сырья его обрабатывают диспергатором, содержащим силикатные соли, расход которых составляет 0,2-0,6 кг на тонну измельченной руды , при этом в качестве силикатных солей используют 1,0-1,5% массовой доли соли тяжелых металлов в виде хрома, меди или цинка, а селективную флокуляцию частиц измельченной руды выполняют в жидкой среде дешламатора при pH 7,0-10,5, что позволяет обеспечить эффективное разделение минеральной составляющей железорудного сырья с получением высококачественного концентрата и отвальных хвостов обогащения.

Основные недостатки способа в сравнительно низкой эффективности разделения особенно в случае обогащения мелковкрапленных материалов, разделяемые компоненты которых слабо различаются по плотности и по удельной восприимчивости.

Известен способ получения магнетитового концентрата (патент РФ № 2535722, опубл. 20.12.2014), принятый за прототип, предусматривающий классификацию, доизмельчение, магнитную сепарацию и магнитную дешламацию с получением магнетитового концентрата и отвальных хвостов, перед доизмельчением рядового магнетитового концентрата осуществляют его предварительную подготовку путем уплотнения и дезактивации, магнитно-гравитационное концентрирование в восходящем потоке и электромагнитном поле с получением отвальных хвостов и чернового концентрата и классификацию чернового концентрата на крупный и тонкий продукты, при этом крупный продукт доизмельчают перед объединением с тонким с последующей дешламацией и магнитной сепарацией.

Основные недостатки способа в сравнительно низкой производительности процесса и эффективности разделения, особенно в случае обогащения мелковкрапленных материалов, разделяемые компоненты которых слабо различаются по плотности и по удельной магнитной восприимчивости.

Техническим результатом является повышение эффективности разделения железных руд и повышение удельной производительности процесса при одновременном его упрощении.

Технический результат достигается тем, что обработку пульпы производят катионным реагентом-собирателем Flotigam EDA при расходе от 100 до 300 г/т и депрессором, в качестве которого используют декстрин при расходе от 150 до 250 г/т, время обработки от 3 до 7 минут, затем пульпу аэрируют и подают под давлением по касательной относительно внутренних стенок корпуса гидроциклона, в котором осуществляют магнитно-гравитационное концентрирование и флотацию с получением железного концентрата и хвостов, при этом в питающем патрубке гидроциклона пульпу намагничивают постоянным магнитным полем с последовательно увеличивающейся от 0 до 0,1 Тл индукцией.

Способ осуществляется следующим образом. Исходное сырье подвергают мокрому измельчению до крупности от 60 до 99 % класса 74 мкм. Полученную пульпу обрабатывают в контактном чане катионным реагентом-собирателем в качестве которого используют Flotigam EDA при расходе от 100 до 300 г/т и депрессором в качестве которого используют декстрин при расходе от 150 до 250 г/т, и времени обработки от 3 до 7 минут. После реагентной обработки пульпу аэрируют. Затем под давлением подают через расположенной по касательной питающий патрубок в гидроциклон. В питающем патрубке пульпу намагничивают постоянным магнитным полем с последовательно увеличивающей от 0 до 0,1 Тл индукцией. Магнитное поле создается, например, при помощи постоянных магнитов. При этом происходит намагничивание ферромагниных частиц и их частичная селективная флокуляция. В гидроциклоне происходит магнитно-гравитационное концентрирование в движущимся потоке. Одновременно на пульпу воздействует неподвижным магнитным полем, с чередующейся полярностью создаваемом, например, при помощи постоянных магнитов. Частицы, за счет их вращения внутри гидроциклона, последовательно проходят мимо участков с различной полярностью магнитного поля. При этом магнитные флокулы постоянно разрушаются и снова образуются, соответственно, немагнитные частицы «захваченные» во флокулу освобождаются. Одновременно, в циклонном аппарате происходит флотация. Причем, немагнитные частицы, за счет реагентной обработки, ставшие гидрофобными, закрепляются на пузырьках воздуха, уменьшая плотность агрегатов «немагнитные частицы – воздух» Соответственно, различие в плотностях магнитных и немагнитных частиц повышается и эффективность их разделения увеличивается. В результате получают железный концентрат, который отправляют на дальнейшую переработку и хвосты, направляемые в отвал.

Способ поясняется следующими примерами.

Обогащению подвергалась гематитомагнетитовая руда одного из месторождений Курской магнитной аномалии с содержанием железа общего – 41,16 %. Руда подвергалась мокрому измельчению в шаровой мельнице до крупности 85 % класса мельче 74 мкм. Полученная пульпа в контактном чане обрабатывалась катионным реагентом-собирателем Flotigam EDA (производства фирмы Clariant), и реагентом депрессором – декстрином. После реагентной обработки пульпа аэрировалась и под давлением подавалась в полиуретановый гидроциклон. Вокруг питающего патрубка гидроциклона размещались постоянные магниты в четыре ряда с возможностью изменения их магнитной индукции от 0 до 0,12 Тл. Вокруг корпуса гидроциклона размещались постоянные магнитны с чередующейся полярностью и с магнитной индукцией на их поверхности 0,08 Тл.

Влияние расхода реагента собирателя на результаты обогащения показано в таблице 1.

Таблица. 1 Влияние расхода реагента собирателя на результаты обогащения.

№ опыта Расход собирателя, г/т Выход концентрата, % Содержание железа в концентрате, % Извлечение железа в концентрат, %
1 70 47,4 63,17 72,75
2 100 48,8 66,82 79,22
3 200 49,1 68,38 81,57
4 300 51,3 67,13 83,67
5 330 53,1 65,23 84,15

Как видно из результатов таблицы уменьшение расхода реагента собирателя меньше 100 г/т ведет к заметному снижения содержания и извлечения железа в концентрат. Увеличение расхода собирателя также ведет к снижению содержания железа в концентрате.

Влияние расхода реагента депрессора на результаты обогащения показано в таблице 2.

Таблица. 2 Влияние расхода реагента депрессора на результаты обогащения.

№ опыта Расход декстрина, г/т Выход концентрата, % Содержание железа в концентрате, % Извлечение железа в концентрат, %
1 130 58,8 61,76 88,23
2 150 52,9 66,89 85,97
3 200 51,2 68,51 85,22
4 250 50,8 68,72 84,81
5 280 48,7 68,73 81,32

Как видно из результатов таблицы уменьшение расхода реагента депрессора ниже 150 г/т ведет к существенному снижению содержания железа в концентрате. Увеличение расхода депрессора больше 250 г/т ведет к заметному снижению извлечения железа в концентрат практически без роста содержания железа в концентрате.

Влияние величины магнитной индукции намагничивания на результаты обогащения показано в таблице 3.

Таблица. 3. Влияние величины магнитной индукции на результаты обогащения

Диапазон индукции, Тл Выход концентрата, % Содержание железа в концентрате, % Извлечение железа в концентрат, %
1 0 - 0,08 46,7 66,02 74,91
2 0 - 0,1 51,3 68,54 85,43
3 0 - 0,12 52,4 67,01 85,31

Как видно из результатов таблицы выход магнитной индукции за пределы диапазона 0–0,1 Тл ведет к снижению технологических показателей обогащения.

Влияние времени обработки реагентами приведено в таблице 4.

Таблица. 4. Влияние времени обработки реагентами на результаты обогащения

Время обработки реагентами, мин Выход концентрата, % Содержание железа, % Извлечение железа, %
1 2 42,3 64,16 65,94
2 3 47,4 66,32 76,37
3 5 51,8 68,55 86,27
4 7 52,1 68,14 86,25
5 9 52,2 68,11 86,38

Как видно из результатов таблицы уменьшение времени обработки реагентами меньше 3 минут ведет к снижению содержания и извлечения железа в концентрате. Увеличение времени обработки реагентами больше 7 минут не улучшает результаты обогащения, но ведет к снижению производительности процесса и следовательно нерационально.

Заявляемый способ позволяет повысить эффективность обогащения железных руд и производительность процесса за счет одновременного воздействия на разделяемые частицы руды центробежного и магнитного полей.

Способ обогащения железных руд, включающий классификацию, измельчение, магнитно-гравитационное концентрирование в движущемся потоке, обработку реагентами, отличающийся тем, что обработку пульпы производят катионным реагентом-собирателем Flotigam EDA при расходе от 100 до 300 г/т и депрессором, в качестве которого используют декстрин при расходе от 150 до 250 г/т, время обработки от 3 до 7 минут, затем пульпу аэрируют и подают под давлением по касательной относительно внутренних стенок корпуса гидроциклона, в котором осуществляют магнитно-гравитационное концентрирование и флотацию с получением железного концентрата и хвостов, при этом в питающем патрубке гидроциклона пульпу намагничивают постоянным магнитным полем с последовательно увеличивающейся от 0 до 0,1 Тл индукцией.



 

Похожие патенты:

Предложенное изобретение относится к способу флотации угольного шлама, в частности к флотационному способу обработки угольного шлама с применением солесодержащей отработанной воды, который можно применять в области очистки солесодержащей отработанной воды и флотации угля, а также удаления золы. Способ флотации включает следующие этапы: подачу флотируемого угольного шлама, агента собирателя и агента пенообразователя в устройство предварительной обработки рудной пульпы; подачу углехимической промышленной солесодержащей отработанной воды, сбрасываемой углехимическим предприятием углехимической промышленности в качестве разбавляющей воды в устройство предварительной обработки рудной пульпы для смешивания друг с другом, чтобы завершить минерализацию; выполнение операции грубой флотации на минерализованной рудной пульпе, выполнение операции тонкой флотации на продукте, полученном после операции грубой флотации, и использование анализатора зольности для оценки зольности окончательных хвостов, выгрузку продукта окончательных хвостов через трубопровод k и последующую подачу в напорный фильтр для обезвоживания; выгрузку отфильтрованного материала m в виде готового, отвечающего требованиям, обогащенного продукта после обезвоживания напорным фильтром.

Изобретение относится к области добычи полезных ископаемых и, в частности, к способам извлечения алмазов из руд и промпродуктов - хвостов обогащения. Способ извлечения алмазов из руд и хвостов обогащения включает обработку исходного сырья люминофорсодержащей композицией, состоящей из органической фазы и органического люминофора, и извлечение алмазов фото- или рентгенолюминесцентной сепарацией, при этом в качестве органического люминофора используют маслорастворимые вещества, а в составе органической фазы люминофорсодержащей композиции используют смесь высокомолекулярных и низкомолекулярных нефтепродуктов, причем люминофор растворяют в органической фазе в соотношении от 1:300 до 1:600, затем полученный раствор люминофора в органическом компоненте смешивают с водой в соотношении от 1:20 до 1:50 и приготавливают эмульсию с применением ультразвукового диспергирования, а обработку исходного сырья проводят приготовленной эмульсией.

Изобретение относится к гидрометаллургии благородных металлов, в частности извлечения золота из техногенных месторождений. Линия состоит из следующих модулей: дезинтегрирующе-классифицирующего, выделения свободного золота, измельчительно-классифицирующего, сгущения, сорбционного цианирования, десорбции золота с насыщенного сорбента, регенерации сорбента, вторичного концентрирования золота, электролиза золотосодержащих растворов.

Предложенное изобретение относится к области флотационного обогащения бериллийсодержащих руд и может быть использовано для получения бериллийсодержащего концентрата высшего сорта с относительно низким содержанием фтора из флюорит-бертрандит-фенакитовых руд. Способ включает сепарацию руды, дробление, измельчение, флотацию бериллия жирнокислотным собирателем и керосином с применением флотореагентов, в том числе включающих сочетание полифосфатов натрия (гексаметафосфата, триполифосфата, пирофосфата), едкого натра или соды, фтористого натрия.

Изобретение относится к получению цинкового порошка из цинксодержащего сырья. Способ включает электрохимическое восстановление цинка из цинксодержащего соединения в щелочном электролите.

Группа изобретений относится к горнодобывающей промышленности, а именно к комплексному обогащению полезных ископаемых, в частности золота, других благородных металлов и попутных минеральных комплексов цветных и редких металлов. Технический результат состоит в достижении высоких показателей обогащения россыпей и/или техногенных источников, содержащих золото и благородные металлы с возможностью попутного извлечения минеральных комплексов, содержащих W, Sn, Ti, Zr, редкоземельные элементы, Hg.

Предложенное изобретение относится к обогащению рудной шихты железных руд и может быть использовано на горно-обогатительных комбинатах при производстве высококачественных железорудных концентратов. Способ производства магнетитовых концентратов повышенного качества включает тонкое гидравлическое грохочение, мокрую магнитную сепарацию, классификацию.

Предложенное изобретение относится к области обогащения полезных ископаемых и может быть использовано на горно-обогатительных комбинатах при производстве высококачественных магнетитовых концентратов. Способ повышения качества магнетитовых концентратов включает тонкое гидравлическое грохочение, доизмельчение, мокрую магнитную сепарацию.

Предложенная группа изобретений относится к области обогащения неметаллорудных полезных ископаемых, содержащих минерал каолинит, в водной среде и может быть использована для получения концентратов, пригодных для использования в керамической, металлургической и строительной промышленности в качестве сырья для производства глинозема, огнеупоров и строительных материалов.

Предложенное изобретение относится к горнорудной промышленности, а именно к обогащению полезных ископаемых методом комбинированной пневмо-электрофлотации и может быть использовано при переработке упорного рудного и нерудного минерального сырья. Способ флотационного обогащения склонных к шламообразованию руд включает грубое измельчение материала, разделение измельченного материала на песковую фракцию и шламовую фракцию с последующей раздельной флотацией.

Предложенное изобретение относится к технологии флотационного обогащения калийных руд и может быть использовано для повышения эффективности действия катионного собирателя при переработке калийных руд. Способ флотационного обогащения сильвинитовых руд включает измельчение руды, обесшламливание, кондиционирование путем введения эмульсии аминов и воздуха во флотируемую пульпу с последующим перемешиванием пульпы, пенную флотацию, сбор пенного продукта - флотоконцентрата и отделение камерного продукта – галита. Перед кондиционированием эмульсию солянокислого амина подвергают диспергации и аэрации путем обработки эмульсии ультразвуком при частоте 22-44 кГц, интенсивности 15-25 Вт/см2 и длительности 5-15 минут. Технический результат - повышение извлечения хлорида калия из руды во флотооконцентрат при пониженном расходе эмульсии аминов. 1 табл., 6 пр.
Наверх