Способ получения никельхромовых порошков из отходов сплава х20н80 в керосине осветительном

Изобретение относится к порошковой металлургии, в частности к получению металлических никельхромовых порошков. Порошок получают путем электроэрозионного диспергирования отходов марки Х20Н80 в керосине осветительном при напряжении на электродах 150-170 В, ёмкости разрядных конденсаторов 40-45 мкФ и частоте следования импульсов 150-170 Гц. Обеспечивается стабилизация процесса получения порошка, повышение экологичности. 4 ил., 3 пр.

 

Изобретение относится к порошковой металлургии, в частности к производству металлических никельхромовых порошков. В промышленности для получения металлических никельхромовых порошков применяют физические и физико-химические методы.

Известен способ получения порошкообразного никеля восстановлением закиси никеля в многоподовой печи [а.с. СССР N 931777, С22 В 23/02, 1982 г.], используемого на цементационной очистке никелевого электролита от меди. В качестве восстановителя используют газ от неполного сжигания угля (газогенераторная станция) или конверсированный природный газ с заданным соотношением водорода, воды, окиси углерода и двуокиси углерода. Процесс ведут при температуре 580-720°С и расходе конверсированного газа 900 нм3/ч.

Недостатком способа является низкая производительность процесса за счет длительного пребывания материала в реакционном объеме печи. Процесс трудноуправляем по поддержанию равномерного температурного поля по подам и, как следствие, прохождение агломерации и неполного восстановления отдельных частиц порошка, что влечет получение цементационной активности порошка на уровне 80%. Кроме того, процесс производится с достаточно высокими экономическими затратами.

Известен способ получения порошка чернового никеля 2-стадийным восстановлением закиси никеля [а.с. СССР № 139444, С22 В 23/02, опубл. 1961 г.]. Первую стадию восстановления ведут во вращающейся трубчатой печи (или в печи кипящего слоя), полученный горячий огарок первой стадии подвергают дополнительному обжигу в кипящем слое в присутствии твердого восстановителя при температуре 1000-1300°С. При этом слой обрабатываемого материала поддерживают в псевдоожиженном состоянии продувкой сквозь него оборотных газов, полученных в той же печи.

Недостатками способа являются сложность аппаратурного исполнения, неполнота восстановления из-за агломерации частиц в высокотемпературной стадии, высокая энергоемкость, особенно второй стадии процесса, и низкие значения химической активности металлического порошка.

Наиболее близким к заявленному техническому решению является способ получения металлического порошка [пат. РФ 2332280 С2, B22F 9/14, 30.06.2006], в котором порошок получают путем зажигания разряда между двумя электродами, один из которых катод, который выполняют из распыляемого материала в виде стержня, диаметром 10≤d≤40 мм. В качестве другого электрода-анода используют электролит (техническая вода). Процесс получения порошка ведут при следующих параметрах: напряжение между электродами 500≤U≤650 В, ток разряда 1,5≤I≤3 А, расстояние между катодом и электролитом 2≤l≤10 мм. Весь процесс ведут при атмосферном давлении.

Недостатком прототипа является невозможность получения порошков-сплавов с равномерным распределением легирующих элементов, а также высокие энергетические затраты.

Заявляемое изобретение направлено на решение задачи получения порошков из отходов сплава Х20Н80 в керосине осветительном с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается тем, что порошок получают методом электроэрозионного диспергирования из отходов сплава Х20Н80 в керосине осветительном при напряжении на электродах 150…170 В, емкости разрядных конденсаторов 40…45 мкФ и частоте следования импульсов 150…170 Гц.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами. В зоне разряда под действием высоких температур происходит нагрев, расплавление и частичное испарение металла.

На фигуре 1 - результаты микроскопии и микроанализа порошков; на фигуре 2 - рентгеноспектральный микроанализ порошка; на фигуре 3 - гранулометрический состав порошка; на фигуре 4 - рентгеноструктурный анализ порошка.

Пример 1

На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в керосине осветительном при массе загрузки 250 г диспергировали отходы сплава Х20Н80. При этом использовали следующие электрические параметры установки:

- напряжение на электродах от 130…150 В;

- емкость конденсаторов 35…40 мкФ;

- частота следования импульсов 130…150 Гц.

Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет прерывисто, поскольку недостаточно энергии для пробоя рабочей жидкости.

Пример 2

На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в керосине осветительном при массе загрузки 200 г диспергировали отходы сплава Х20Н80. При этом использовали следующие электрические параметры установки:

- напряжение на электродах от 150…170 В;

- емкость конденсаторов 40…45 мкФ;

- частота следования импульсов 150…170 Гц.

Полученный порошок исследовали различными методами.

Для изучения формы и морфологии полученных порошков были выполнены снимки на электронно-ионном сканирующем (растровом) микроскопе с полевой эмиссией электронов «QUANTA 600 FEG» (Нидерланды). На основании фигуры 1, порошок, полученный методом ЭЭД из отходов Х20Н80, в основном состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.

Изучение фазового состава электроэрозионного порошка проводили рентгеновском дифрактометре «Rigaku Ultima IV» (Япония). В результате изучения концентраций элементного и минералогического состава образца, были получены результаты, представленные на фигуре 2.

Основным материалом в образце является железо, никель, хром, углерод.

Затем полученный порошок проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам (фигура 3).

Установлено, что средний размер частиц составляет 64,942 мкм, арифметическое значение - 64,94 мкм.

Анализ фазового состава полученного порошка (фигура 4) показал, что наличие в составе рабочей жидкости (керосин) углерода способствует образованию фаз карбидов, таких как Ni3С, Fe3С. Основные фазами являются Fe, Ni, Cr, Ni3С, Fe3С.

Пример 3

На экспериментальной установке для получения никельхромовых порошков из токопроводящих материалов в керосине осветительном при массе загрузки 150 г диспергировали отходы сплава Х20Н80. При этом использовали следующие электрические параметры установки:

- напряжение на электродах от 170…190 В;

- емкость конденсаторов 45…55 мкФ;

- частота следования импульсов 170…190 Гц.

Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет не стабильно и сопровождается хлопками.

Способ получения никельхромового порошка, отличающийся тем, что порошок получают методом электроэрозионного диспергирования из отходов сплава Х20Н80 в керосине осветительном при напряжении на электродах 150-170 В, ёмкости разрядных конденсаторов 40-45 мкФ и частоте следования импульсов 150-170 Гц.



 

Похожие патенты:

Изобретение относится к порошку сплава на основе кобальта, спеченному телу из сплава на основе кобальта и способу изготовления спеченного тела из сплава на основе кобальта и может быть использовано для изготовления неподвижных лопаток турбин и элементов камер сгорания. Порошок сплава на основе кобальта содержит, мас.

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей газотурбинных двигателей методом аддитивного производства содержит, мас.%: хром 25-27, вольфрам 10-12, никель 7-10, углерод 0,1-0,3, тантал 3-6, титан 0,10-0,2, цирконий 0,01-0,05, магний 0,03-0,08, бор 0,003-0,01, иттрий 0,05-0,3, лантан 0,03-0,1, церий 0,01-0,05, кобальт и вредные вещества, в том числе кислород – остальное.

Изобретение относится к получению интерметаллидных сплавов на основе фаз Гейслера, которые могут быть использованы в качестве материалов для устройств хранения информации в электротехнической промышленности. Способ получения интерметаллидного сплава Гейслера системы Ti-Al-Me включает приготовление реакционной смеси порошков исходных компонентов, содержащей порошки в соотношении 2Ме+Ti+Al, где Ме - Со, Fe или Cu, прессование шихтовой заготовки, помещение заготовки в реакционную печь, воспламенение прессованной заготовки с последующим реагированием ее компонентов в режиме горения в атмосфере аргона при давлении 0,1 МПа или в вакууме при 13,3*10-2 Па.

Изобретение относится к металлургии, а именно к металлическому сплаву с высокими эксплуатационными характеристиками и может быть использовано для аддитивного производства деталей машин, в частности сопла газовой турбины. Металлический сплав для изготовления сопла газовой турбины методом аддитивного производства, состоящий из, мас.%: O 0,01–0,05, N 0,005–0,025, S менее 0,003, C 0,005–0,07, Mn 0,6–0,8, Si 0,8–1,0, P менее 0,04, Cr 27–33, Ni 11–12, W 5–9, Fe 0,4–0,7, Ta менее 0,001, B менее 0,003, Cu менее 0,001, Zr менее 0,003, Co - остальное.

Изобретение относится к металлургии, а именно к получению мишени из суперсплавов для катодного вакуумно-дугового нанесения покрытий. Мишень из суперсплава на основе порошка никеля или порошка кобальта для катодного вакуумно-дугового нанесения покрытий выполнена из легированного порошка суперсплава на основе никеля или кобальта, содержащего интерметаллические соединения, и имеет поликристаллическую структуру со случайной ориентацией зерен, при этом средний размер зерна в структуре мишени составляет менее 50 мкм, а пористость структуры составляет менее 10%.

Группа изобретений относится к аморфным сплавам на основе кобальта и может быть использована при изготовлении компонентов часов, в частности при изготовлении пружин в механических часах. Аморфный сплав CoaNibMoc(C1 – xBx)dXe, где Х представляет собой один или несколько элементов, выбранных из группы, состоящей из Cu, Si, Fe, P, Y, Er, Cr, Ga, Ta, Nb, V и W; где показатели от а до е и х удовлетворяют следующим далее условиям: 55 ≤ а ≤ 75 ат.%, 0 ≤ b ≤ 15 ат.%, 7 < c ≤ 17 ат.%, 15 ≤ d ≤ 23 ат.%, причем 0,1 ≤ x ≤ 0,9, 0 ≤ e ≤ 10 ат.%, при этом каждый элемент, выбранный из группы, имеет уровень содержания ≤ 3 ат.%, предпочтительно ≤ 2 ат.%, остальное представляет собой примеси.

Группа изобретений относится к изготовлению распыляемой мишени. Предложен способ изготовления распыляемой мишени, в котором формируют расплавленную смесь, состоящую из соединений, выбранных из группы, включающей СоВ, FeB и CoFeB, заливают расплавленную смесь в форму для образования направленного литого слитка, выполняют отжиг и нарезают слиток для мишени, которая имеет чистоту выше 99,99%, содержание кислорода 40 мд или менее и сформированную боридами столбчатую микроструктуру.

Изобретение относится к получению вольфрамотитанокобальтовых порошков из отходов сплава Т30К4. Ведут электроэрозионное диспергирование отходов сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц.

Изобретение относится к изготовленной по аддитивной технологии заготовке из сплава на основе кобальта, имеющего химический состав, содержащий, мас.%: 0,08-0,25 С; не более 0,1 В; 10-30 Cr; не более 30 Fe и Ni в суммарном количестве, где Fe составляет не более 5; 5-12 W и/или Мо в суммарном количестве; 0,5-2 Ti, Zr, Nb и Та в суммарном количестве; не более 0,5 Si; не более 0,5 Mn; 0,003-0,04 N и остальное - Со и примеси.

Изобретение относится к металлургическому производству, в частности к металлургии цветных металлов и сплавов, предназначенных для изготовления заготовки из кобальта для производства изотопной продукции. Проводят вакуумно-индукционный переплав полученного электролизом кобальта с раскислением расплава алюминием марки А99 в количестве 0,001-0,15 мас.% и модифицированием никельмагниевой лигатурой и мишметаллом марки МЦ50Ж6 в количестве 0,001-0,10 мас.% каждого, разливку полученного расплава с получением слитка кобальта, который нагревают и подвергают многоступенчатой ковке с коэффициентом укова, равным 10-15 единиц, на молотах для получения заготовки в виде полосы для дальнейшей горячей и холодной прокатки.

Изобретение относится к порошковой металлургии, в частности, к фрикционным материалам на основе меди. Может использоваться для работы в условиях жидкостного трения узлов и механизмов, автотракторной техники и техники специального назначения.
Наверх