Газотурбинный двигатель

Изобретение относится к газотурбинным двигателям. Газотурбинный двигатель, содержащий блок управления; две поочередно работающие камеры сгорания с топливными форсунками и свечами зажигания; компрессор, выход которого через запорные устройства соединен со входами первой и второй камер сгорания, выходы которых через запорные устройства соединены соответственно с первым и вторым входами в турбину, согласно изобретению дополнительно содержит цилиндр со свободно движущимся поршнем, четыре отвода цилиндра соединены соответственно с первой камерой сгорания, с первым входом в турбину, со вторым входом в турбину и со второй камерой сгорания. Изобретение обеспечивает повышение эффективности работы двигателя и увеличение его ресурса. 3 ил.

 

Область техники

Предлагаемое изобретение относится к двигателестроению, в частности к генераторам газа для газотурбинных установок. Заявленное изобретение направлено на разработку генератора газа, имеющего минимальное количество конструктивных элементов и движущихся деталей.

Известен детонационный двигатель внутреннего сгорания, патент RU 2066383 С1, л.1, содержащий по меньшей мере блок спаренных цилиндров с разделительными поршнями, образующими газовые полости с камерами сгорания и гидравлические полости, сообщенные между собой и с гидротурбиной при помощи магистралей рабочей жидкости, отличающийся тем, что камеры сгорания цилиндров двигателя снабжены детонаторами. Изобретение относится к автомобильному транспорту и предназначено для использования в качестве силовой установки автомобилей. Задача изобретения - создание двигателя с высокими качественными характеристиками за счет применения детонационного горения.

Известный двигатель имеет следующие недостатки: Передача силового воздействия на турбину с помощью жидкости при высоких скоростях ее движения связана со значительной турбулентностью этой жидкости и, следовательно, с существенной потерей мощности. Камера сгорания в цилиндре, разделенная поршнем от полости с жидкостью, имеет низкую температуру, что снижает эффективность горения топлива. Механизм, необходимый для синхронизации движения поршней, усложняет конструкцию двигателя. Использование известного двигателя без детонаторов не устраняет указанных недостатков. При работе двигателя с детонаторами детонационное возгорание топлива способствует возникновению ударных волн в жидкости и возникновению кавитации, ведущих к разрушению лопаток турбины.

Известен способ создания многоцилиндрового жидкостного двигателя внутреннего сгорания и устройство для его осуществления, патент RU 2495262 С2, л.2, который содержит гидросистему, состоящую из турбины и цилиндров, подающих на турбину из внешней камеры сгорания жидкость под давлением газов сгорающей топливной смеси и системы подготовки и воспламенения горючей смеси, отличающийся тем, что жидкостные двигатели объединены в один агрегат, цилиндры которого спарены в проточные блоки, закольцованы на общую турбину, поочередно заполняемыми жидкостью, отсекаемой от потока, отклоненного в спаренный цилиндр, при этом истечение жидкости происходит под давлением газов из внешней камеры сгорания из первого цилиндра, поток снова возвращается в него, вытесняя газы, пока извергается спаренный цилиндр, а последующий блок четырехцилиндрового двигателя включается в действие при снижении давления в цилиндре предыдущего блока вдвое, значит обратно-пропорционально числу блоков двигателя.

Известный двигатель имеет следующие недостатки: из-за значительной инерционности двигатель не эффективен при частой смене режимов работы. С увеличением скорости течения жидкости возрастает дополнительная мощность двигателя на преодоление турбулентности, поэтому известный двигатель не эффективен при больших оборотах турбины. При перепуске жидкости из одной трубы в другую трубу возможны гидравлические удары. Выхлопные клапаны связаны с конденсатором паров жидкости, возвращаемой обратно в цилиндр из сборника жидкости, что усложняет конструкцию двигателя. Химические добавки из выхлопных газов загрязняют жидкость и повышают ее химическую активность. Конструкция двигателя отличается повышенной сложностью.

Наиболее близким по совокупности признаков к заявленному изобретению является роторно-поршневой двигатель, патент RU 2516044 С2, л.4 (прототип), содержащий корпус с цилиндрической полостью, ротор с цилиндрическим уступом, расположенный в подшипниках торцевых крышек, воздушный компрессор высокого давления и рекуперативный теплообменник для нагрева воздуха после компрессора теплом отходящих газов; кроме того, двигатель снабжен двумя теплоизолированными камерами сгорания периодического действия, при этом в каждой камере установлены клапаны впуска и выпуска, снабженные электромагнитом и сервоприводом, и топливная форсунка с пневмоприводом, а на линии подачи воздуха от компрессора в двигатель установлены два ресивера: один ресивер со встроенным электронагревателем установлен после рекуперативного теплообменника и подсоединен к камерам сгорания, а второй установлен до рекуперативного теплообменника.

Решаемая задача - повышение эффективности работы двигателя в широком диапазоне его работы и увеличение ресурса его работы.

Известный двигатель имеет следующие недостатки

Реализация последовательности его работы достигается за счет применения большого количества вспомогательного оборудования, включающего пневматические узлы, электроподогреватель, ресивер, а также за счет развитой системы газопроводов, что ведет к усложнению конструкции, снижению надежности двигателя и утечке тепла в многочисленных каналах. При исследовании отличительных признаков аналогов изобретения не выявлен газотурбинный двигатель, содержащий минимальное количество конструктивных элементов и движущихся деталей.

Раскрытие сущности изобретения

Задачей, на решение которой направлено заявляемое изобретение, является разработка газотурбинного двигателя, содержащего минимальное количество конструктивных элементов и движущихся деталей.

Решение поставленной задачи по разработке наиболее простой конструкции газотурбинного двигателя, достигнуто в газотурбинном двигателе, содержащем турбину, блок управления, две поочередно работающие камеры сгорания (КС) с топливными форсунками и свечами зажигания, компрессор, выход которого через запорные устройства (ЗУ) соединен со входами первой КС2 и второй КС3, выходы которых через запорные устройства соединены соответственно с первым и вторым входами в турбину, дополнительно содержащем цилиндр со свободно движущимся поршнем, четыре вывода цилиндра соединены соответственно с первой камерой сгорания, с первым входом в турбину, со вторым входом в турбину и со второй камерой сгорания.

Сущность изобретения заключается в том, что во время рабочего хода в первой КС основной поток горящих газов направляют в турбину. Часть газов потока направляют в цилиндр. Напор газов смещает поршень в противоположную сторону цилиндра, заполненного компрессорным воздухом. Воздух нагнетают во вторую КС, сжимают его, запирают в КС и выдерживают до следующего рабочего хода. Поршень предназначен для передачи давления на воздух в цилиндре и для разделения от смешивания газов и воздуха.

Сущность изобретения поясняется на чертежах, которые приведены в качестве примеров для пояснения работы газотурбинного двигателя (ГТД).

На фиг. 1 представлена схема варианта ГТД.

На фиг. 2 представлена временная диаграмма зависимости давления р от времени t в первой камере сгорания.

На фиг. 3 представлена временная диаграмма зависимости давления р от времени t во второй камере сгорания.

Газотурбинный двигатель, содержит, блок управления (БУ), компрессор (на схеме не показаны), турбину 1, две поочередно работающие камеры сгорания КС2 и КС3 с топливными форсунками и свечами зажигания; выход компрессора через запорные устройства ЗУ8 и ЗУ9 соединен со входами первой КС2 и второй КС3, выходы которых через запорные устройства ЗУ4 и ЗУ5 соединены соответственно с первым и вторым входами в турбину 1. Двигатель содержит цилиндр 11 со свободно движущимся поршнем 12, четыре вывода цилиндра соединены соответственно с первой камерой сгорания КС2, с первым входом в турбину 1, со вторым входом в турбину 1 и со второй камерой сгорания КС3.

Перед началом рабочего хода в первой КС2 находится сжатый горячий воздух. Во второй КС3 и в газовом канале 11 находится компрессорный воздух. Через форсунку 10 в КС2 впрыскивают дозу топлива и после его возгорания и необходимой выдержки открывают ЗУ4, ЗУ 13 и ЗУ 14. Сгоревшую топливовоздушную смесь нагнетают через ЗУ4 в турбину 1, фиг. 2 2-3, и в цилиндр 11. Под напором этой смеси поршень 12, смещаясь в цилиндре 11, вытесняет воздух из него через ЗУ 14 во вторую КС3. При достижении заданного давления в КС3 запирают ЗУ 14 и выдерживают сжатый горячий воздух до следующего рабочего хода в КС3, фиг. 3, 1-2. В конце рабочего хода в КС2 открывают ЗУ8 и ЗУ7 и продувают КС2 и цилиндр 11 компрессорным воздухом с выходом его в турбину 1, фиг. 2, 3-4. Запирают ЗУ7 и продолжают нагнетать воздух в КС2 и в цилиндр 11. При достижении заданного давления в КС2 запирают ЗУ8 и выдерживают сжатый горячий воздух в КС2 и в цилиндре 11 до рабочего хода в КС3, фиг. 2 4-5, который реализуют после некоторой выдержки, в зависимости от частоты рабочих ходов. Впрыскивают топливо в КС3 и реализуют в нем рабочий ход, фиг. 3 3-4, с дополнительным нагнетанием воздуха из цилиндра в КС2 и последующей его выдержкой, фиг. 2 5-6. Далее реализуют аналогичную последовательность операций с участием КС2.

Сведения, подтверждающие возможность осуществления изобретения с получением указанного результата предлагаемого устройства ГТД, следующие:

Объем полости цилиндра должен быть таким, чтобы после вытеснения из него воздуха в КС давление этого воздуха было достаточными для воспламенения впрыснутой дозы топлива. Торцы поршня в одном из крайних положений в цилиндре должны располагаться в непосредственной близости между крайним отводом и ближайшем к нему вторым отводом из цилиндра. Поршень должен быть с предельно низким весом. На обоих концах цилиндра должны быть буферные полости и датчики давления.

Согласованная работа узлов ГТД может быть осуществлена при использовании электронного блока управления и при наличии необходимых датчиков.

Запорные устройства могут быть предпочтительно изготовлены в виде вала с отверстиями для прохода газов, повороты которого осуществляет электромагнитное устройство по сигналам от БУ.

Запуск ГТД может быть осуществлен после раскрутки компрессора, например, с помощью стартера.

При работе с различными сортами топлив необходимая степень сжатия в КС может регулироваться изменением давления на выходе компрессора. Воспламенение плохо возгораемой рабочей смеси перед началом рабочего хода может быть осуществлено с необходимым опережением для ее полного сгорания. Увеличение мощности ГТД может быть достигнуто увеличением числа пар КС, подключенных ко входам турбины.

Частота рабочих ходов двигателя может быть отрегулирована путем задержки впрыска в камеры сгорания.

В качестве турбины может быть использовано роторно-лопастное устройство.

Источники информации

1. Патент RU 2066383С1. Детонационный двигатель внутреннего сгорания. МПК F02B71/04.

2. Патент RU 2495262С2. Способ создания многоцилиндрового жидкостного двигателя внутреннего сгорания и двигатель. МПК F02B75/00, F01B11/08, F02B71/04.

3. Патент RU 2516044С2. Роторно-поршневой двигатель. МПК F02B55/02, F01C1/356, F02B19/02, F16J15/40.

Газотурбинный двигатель, содержащий блок управления; две поочередно работающие камеры сгорания с топливными форсунками и свечами зажигания; компрессор, выход которого через запорные устройства соединен со входами первой и второй камер сгорания, выходы которых через запорные устройства соединены соответственно с первым и вторым входами в турбину, отличающийся тем, что дополнительно содержит цилиндр со свободно движущимся поршнем, четыре отвода цилиндра соединены соответственно с первой камерой сгорания, с первым входом в турбину, со вторым входом в турбину и со второй камерой сгорания.



 

Похожие патенты:

Изобретение может быть использовано в свободнопоршневых двигателях. Свободнопоршневой двигатель содержит вертикально расположенный рабочий цилиндр (1) со свободным поршнем (2) внутри и взаимодействующим внутренней поверхностью с соосным с ним буферным цилиндром (3).

Способ работы свободнопоршневого генератора газов (СПГГ) и устройства для его осуществления относятся к двигателестроению, в частности к свободнопоршневым генераторам газов. Целью изобретения является разработка способа генерации газов с повышенными давлением и температурой, необходимыми для повышения КПД турбины, и разработка вариантов СПГГ, работающих по предлагаемому способу.

Изобретение может быть использовано в свободнопоршневых двигателях. Способ продувки осуществляется во внешней камере (1) сгорания свободнопоршневого с оппозитным движением поршней энергомодуля с внешней камерой сгорания и с линейным электрогенератором.

Изобретение относится к свободнопоршневым двигателям внутреннего сгорания с линейным электрическим трехфазным генератором высокой надежности. Свободнопоршневой двигатель внутреннего сгорания с линейным электрическим трехфазным генератором содержит автономно работающие модули 2, 3, 4.

Изобретение относится к энергетическим установкам и может быть использовано в автомобилестроении, тяжелом машиностроении и малой энергетике, в частности в виде вспомогательных двигателей транспортных механизмов на передвижных или переносных электростанциях, электросварочных агрегатах и др. Изобретение направлено на повышение надежности двигателя.

Изобретение может быть использовано в устройствах ударного действия с возвратно-поступательным движением рабочего органа. Двигатель внутреннего сгорания для инструментов ударного действия содержит цилиндрический корпус (1) с крышкой (2) и дном (3), размещенные в корпусе (1) главный поршень (4) и подпружиненный в осевом направлении поршень-ударник (7).

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета. Установка состоит из осесимметричного корпуса (1), прикрепленного к торцевой поверхности фюзеляжа (2) центральной и обтекаемыми пластинами (3, 4) соответственно, включающего две кольцевые обечайки (5, 6) контура основного потока воздуха (7) и тракта пограничного слоя фюзеляжа (8).

Изобретение относиться к энергетическому оборудованию, в частности производству электрической энергии из энергии пара или сжатого газа. В устройстве нет разделения на генерирующую и двигательную часть, благодаря чему для его построения необходим минимум частей, а также возможно обеспечение полной герметизации с созданием внутри корпуса значительного давления.

Изобретение относиться к энергетическому оборудованию, в частности производству электрической энергии из энергии пара или сжатого газа. В устройстве нет разделения на генерирующую и двигательную часть, благодаря чему для его построения необходим минимум частей, а также возможно обеспечение полной герметизации с созданием внутри корпуса значительного давления.

Изобретение относится к двигателестроению, а именно к устройствам двигателей внутреннего сгорания со свободным поршнем. Представлено устройство для преобразования химической энергии топливно-воздушной смеси в электрическую, включающее цилиндр, свободный поршень, выполненный с возможностью поступательного движения в цилиндре, снабженном впускными и выпускными клапанами, электромагнитную систему, при этом цилиндр выполнен свободным, электромагнитная система содержит магниты, электрообмотки и магнитопровод, при этом магниты или магнитопровод расположены на свободном поршне, электрообмотки с магнитопроводом или магниты с электрообмотками установлены на свободный цилиндр.

Изобретение относится к области машиностроения. Предложен гидропневмодвигатель внутреннего сгорания, к корпусу 5 которого снизу присоединена крышка 4 компрессора с выпускным клапаном 1 компрессора и впускным 2 клапаном компрессора. Внутри корпуса 1 расположен цилиндр 8 и гильза 45. В корпусе 1 установлен электромагнитный фиксатор 10. Между крышкой 4 корпуса и крышкой 15 цилиндра расположена пружина 18. В крышку 15 цилиндра входит клапан 17 впускной и клапан выпускной 19. В цилиндре 8 расположен поршень 13, шток 12, гидропоршень 11, поршень 9 компрессора, пружина 7 компрессора. Гидромотор-насосом 25 охлаждения управляет электромагнитный кран 30 охлаждения. Гидромотор-генератором 28 управляет электромагнитный кран 29 генератора. Электромагнитная форсунка соединена трубопроводом с корпусом гидроаккумулятора 36 топлива. Корпус гидроаккумулятора 36 топлива соединен трубопроводами с электромагнитным краном 32 возврата, дросселем 33 и гидромотор-насосом 34 топлива с присоединенным к нему электромагнитным краном 31 топлива. Гидромотор-насос 34 топлива через электромагнитный клапан 40 расхода трубопроводом сообщается с корпусом 41 гидроаккумулятора. Корпус 41 гидроаккумулятора через электромагнитный кран 35 сброса давления сообщается трубопроводом с баком 27. На корпусе 41 гидроаккумулятора установлен мотор-редуктор 39. К корпусу присоединен электромагнитный клапан 48 выпуска и электромагнитный клапан 49 подачи. Элементы управления гидропневмодвигателем внутреннего сгорания соединены проводами с блоком управления и сигнализации 56. Использование гидропневмодвигателя внутреннего сгорания позволит уменьшить затраты энергии на привод ходовой части, рабочих органов и элементов систем управления технических средств. 4 ил.
Наверх