Комплексная теплогенерирующая установка

Изобретение относится к теплоэнергетике и может быть использовано как теплогенерирующая установка для получения водяного пара и нагрева сетевой воды в системах теплоснабжения. Комплексная теплогенерирующая установка содержит контактный парогенератор, корпус топки, верхний эллиптический коллектор, нижний эллиптический коллектор, горелки, сверху корпус топки соединен с конвекционным газоходом, в котором размещен пароперегреватель, эжектор, пластинчатый конденсатор, адсорбер, причем в полости адсорбера сверху вниз расположены каплеотбойник, ороситель. Сверху корпус топки контактного парогенератора соединен с конвекционным газоходом, в котором размещен пароперегреватель, соединенный с патрубком выхода пара циклона, сам конвекционный газоход соединен сверху с приемной камерой эжектора, в пластинчатом конденсаторе перед выходным газовым патрубком в газовом коллекторе установлен каплеотбойник, а входной и выходной водяные коллекторы расположены справа снизу и слева сверху теплообменного короба, газовый патрубок газового коллектора соединен с корпусом адсорбера, снабженного патрубками входа и выхода очищенного газа, патрубками входа и выхода промывочной воды, причем в полости адсорбера сверху вниз расположены каплеотбойник, ороситель, соединенный с патрубком входа промывочной воды и, в шахматном порядке, перфорированные корзины, заполненные гранулированным доменным шлаком, а патрубок выхода очищенных газов, соединен с вентилятором высокого давления. Техническим результатом изобретения является повышение экономической и экологической эффективности комплексной теплогенерирующей установки. 5 ил.

 

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано как теплогенерирующая установка для совместного получения водяного пара и нагрева сетевой воды в системах теплоснабжения.

Известен контактный парогенератор, содержащий топку, состоящую из корпуса, внутри которого по окружности помещены экранные трубы, соединенные с верхним кольцевым коллектором, снабженным патрубком выхода питательной воды и нижним кольцевым коллектором, снабженным патрубком входа питательной воды, осесимметрично которому устроена горелка, причем экранные трубы и корпус выгнуты таким образом, что полость образованная экранными трубами повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелке, эжектор, циклон и питательный насос, при этом топка соединена своим выходным отверстием, образованным кольцом верхнего коллектора с приемной камерой эжектора, диффузор которого соединен с тангенциальным патрубком циклона, патрубок выхода обратной воды которого соединен через трубопровод обратной воды, трубопровод питательной воды и питательный насос с патрубком входа питательной воды в нижний коллектор топки, а патрубок выхода горячей воды из верхнего коллектора соединен трубопроводом с соплом эжектора [Патент РФ № №2383815, МПК F 22 В 27/00, 2010].

Основными недостатками известного контактного парогенератора являются исполнение экранного пучка труб топки в виде одиночного факела, что создает опасность перегрева верхней зоны экранного пучка, снижает надежность и ограничивает производительность, необходимость для проведения процесса горения чистого водорода и кислорода, для чего требуется наличие источников этих компонентов, получение теплоносителя только в виде водяного пара, что ограничивает диапазон его использования, значительно увеличивает стоимость полученного теплоносителя и таким образом, снижает его эффективность.

Более близким к предлагаемому изобретению является комплексная котельная установка, содержащая контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, экранные трубы и корпус топки выгнуты таким образом, что нижняя зона полости образованная экранными трубами повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелках, а верхняя часть экранных труб и корпуса топки направлены вертикально вверх, эжектор, приемная камера которого соединенной снизу с топкой, а диффузора соединен на выходе с циклоном, корпус которого снабжен входным тангенциальным патрубком, патрубками отвода парогазовой смеси и конденсата, соответственно, внутри которого помещена центральная труба, соединенная с патрубком выхода пара, причем патрубок отвода парогазовой смеси соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего, из расположенных сверху-вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионноустойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через паровые каналы сверху-вниз с газовым коллектором и пирамидальным днищем, снабженными газовым и конденсатным патрубками, а водные каналы соединены справа и слева с пирамидальными входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, газовый и конденсатный патрубки соединены с корпусом дегазатора, снабженного конденсатным патрубком, патрубком входа конденсата, патрубком входа влажного газа, соединенного с перфорированным распределителем, каплеотбойником и патрубком выхода очищенных газов, соединенным с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком [Патент РФ № №2705528, МПК F 22 В 27/00, 2019].

Основными недостатками известной комплексной котельной установки являются невозможность получения перегретого пара, обусловленное отсутствием пароперегревателя в парогенераторе, недостаточный температурный напор в пластинчатом конденсаторе, обусловленная перекрестным ходом теплоносителей в нем, наличие в уходящих дымовых газах существенного количества оксидов азота и оксидов углерода, обусловленное отсутствием установки очистки от этих примесей, что ограничивает диапазон использования полученного пара, снижает эффективность процесса конденсации, ухудшает экологические характеристики установки и, таким образом, снижает ее экономическую и экологическую эффективность.

Техническим результатом предлагаемого изобретения является повышение экономической и экологической эффективности комплексной теплогенерирующей установки.

Технический результат достигается комплексной теплогенерирующей установкой, содержащей контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, сверху корпус топки соединен с конвекционным газоходом, в котором размещен пароперегреватель, сам конвекционный газоход соединен сверху с приемной камерой эжектора, входной патрубок которого соединен с патрубком питательной воды, а диффузор соединен с циклоном, патрубок выхода пара которого соединен, в свою очередь, с пароперегревателем, патрубок отвода парогазовой смеси соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего, из расположенных сверху-вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионноустойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через парогазовые каналы сверху-вниз с газовым коллектором и пирамидальным днищем, снабженными газовым патрубком, перед которым установлен каплеотбойник и конденсатным патрубком, соответственно, а водные каналы соединены справа снизу и слева сверху с входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, соответственно, газовый патрубок соединен с корпусом адсорбера, снабженного патрубками входа и выхода очищенного газа, патрубками входа и выхода промывочной воды, причем в полости адсорбера сверху-вниз расположены каплеотбойник, ороситель, соединенный с патрубком входа промывочной воды и, в шахматном порядке, перфорированные корзины, заполненные гранулированным доменным шлаком, а патрубок выхода очищенных газов, соединен с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком.

На фиг. 1 представлена принципиальная схема предлагаемой комплексной теплогенерирующей установки (КТГУ), на фиг. 2-5 - разрезы пластинчатого конденсатора.

КТГУ содержит контактный парогенератор 1, состоящий из корпуса топки 2, внутри которого по эллиптическому периметру помещены экранные трубы 3, соединенные с верхним эллиптическим коллектором 4, снабженным патрубком выхода питательной воды 5 и нижним эллиптическим коллектором 6, снабженным патрубком входа питательной воды 7, соединенным с питательным насосом 8, внутри нижнего эллиптического коллектора 6 осесимметрично ему расположены горелки (на фиг. 1-5 не показаны), сверху корпус топки 2 соединен с конвекционным газоходом 9, в котором размещен пароперегреватель 10, сам конвекционный газоход 9 соединен сверху с эжектором 11, состоящим из приемной камеры 12 с патрубком 13 и соплом 14, соединенными с патрубком выхода питательной воды 5, смесительной камеры 15 и диффузора 16, приемная камера 12 эжектора 11 соединена снизу с топкой 2 через конвекционный газоход 9, а диффузор 16 с циклоном 17, корпус которого снабжен входным тангенциальным патрубком 18, патрубками отвода парогазовой смеси 19 и конденсата 20, соответственно, внутри которого помещена центральная труба 21, соединенная с патрубком выхода пара 22, соединенного, в свою очередь, с пароперегревателем 10, причем патрубок отвода парогазовой смеси 19 соединен с прямоугольным корпусом пластинчатого конденсатора 23, состоящего, из расположенных сверху-вниз пирамидального парогазового коллектора 24, снабженного парогазовым патрубком 25, соединенного снизу с теплообменным коробом 26, в котором устроены вертикальные теплообменные перегородки 27, выполненные из коррозионноустойчивого материала (например, из армированного малощелочного стекла), образующие вертикальные парогазовые 28 и горизонтальные водные каналы 29, причем парогазовый коллектор 24 соединен через парогазовые каналы 28 сверху-вниз с газовым коллектором 30 и пирамидальным днищем 31, снабженными газовым патрубком 32, перед которым установлен каплеотбойник 33 и конденсатным патрубком 34, соответственно, а водные каналы 29 соединены справа снизу и слева сверху с входным и выходным водяными коллекторами 35 и 36, соединенными с входным и выходным патрубками сетевой воды 37 и 38, соответственно, газовый патрубок 32 соединен с корпусом адсорбера 39, снабженного патрубками входа и выхода очищенного газа 40 и 41, патрубками входа и выхода промывочной воды 42 и 43, причем в полости адсорбера сверху-вниз расположены каплеотбойник 44, ороситель 45, соединенный с патрубком входа промывочной воды 42 и в шахматном порядке перфорированные корзины 46, заполненные гранулированным доменным шлаком 47, а патрубок выхода очищенных газов 41, соединен с вентилятором высокого давления 48, напорный патрубок которого снабжен коническим насадком 49.

КТГУ работает следующим образом. Питательный насос 8, создающий высокое давление Р1, через патрубок 7 и нижний эллиптический коллектор 6 подает питательную воду в экранные трубы 3, которые равномерно обогреваются от факелов из горелок (на фиг. 1-5 не показаны) Из экранных труб вода, нагретая до температуры кипения, поступает в верхний эллиптический коллектор 4, откуда через патрубок 5 и соединенный с ним патрубок 13 эжектора 11, из сопла 14 струя питательной воды, нагретая до температуры кипения Т1 при давлении Р1 с большой скоростью, попадает в смесительную камеру 14, создавая в приемной камере 11 разрежение. В результате созданного разрежения продукты сгорания топлива (например, полученные при сгорании природного газа или мазута: оксиды углерода, оксиды азота, пары воды) при давлении Р0 и высокой температуре ТТ из топки 2 попадают в приемную камеру 11 и далее в смесительную камеру 14. В смесительной камере 14 давление воды снижается от Р1 до Р2, а давление дымовых газов, наоборот, повышается от Р0 до Р2, питательная вода смешивается и контактирует с продуктами сгорания из топки 2, интенсивно испаряясь, в результате снижения давления до Р2 и скоростного теплообмена с продуктами сгорания, а образовавшаяся парогазовая смесь при давлении Р2 и температуре Т2 поступает в диффузор 16. В диффузоре 15 динамическое давление струи пара трансформируется в статическое, в результате чего давление паровоздушной смеси на выходе из диффузора 15 поднимается от Р2 до Р3, величина которого несколько меньше, чем Р1, но значительно больше, чем Р2 и Р0 [В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. - Минск: Выш. школа, 1988, с. 68]. Полученная парогазовая смесь через тангенциальный патрубок 18 поступает в циклон 17, где в результате вращения и воздействия центробежных сил на парогазовую смесь происходит ее деление на практически чистый насыщенный водяной пар с давлением Рп и температурой Тп, собирающийся в верхней и средней зонах полости корпуса циклона 17, парогазовую смесь, которая за счет большей плотности составляющих ее газов собирается в нижней зоне полости корпуса циклона 17 и конденсат, который стекает в поддон циклона 17. В соответствии с этим водяной пар отбирается через центральную трубу 21 из патрубка 22 и поступает в пароперегреватель 10, из конденсатного патрубка 20 отводится конденсат на ХВО, а из патрубка 19 выводится парогазовая смесь в пластинчатый конденсатор 23, выполненный из коррозионноустойчивого материала. В конденсаторе 23 парогазовая смесь, перемещаясь сверху-вниз, отдает тепло при конденсации водяных паров, охлаждаясь при нагреве через перегородки 27 обратной сетевой водой, движущейся снизу-вверх в противотоке, которая через патрубок 38 подается потребителю. Одновременно, в конденсаторе 23 при конденсации паров воды, снижении температуры и давления парогазовой смеси от Т2 и Р3 до ТК и РК (температура ТК ниже точки росы) происходит окисление монооксидов азота до диоксидов и поглощение диоксидов азота и частично диоксида углерода образовавшимся конденсатом. При этом несконденсировавшиеся газы из парогазовой смеси (N2, СО2 и др.), в результате своей большей плотности по сравнению с парами воды, собираются в газовом коллекторе 30, откуда проходя через каплеотбойник 33, газ очищается от капель конденсата и через патрубки 32 и 40 поступает в адсорбер 39, а образовавшийся конденсат, насыщенный кислыми компонентами, стекает в поддон 31, откуда через патрубок 34 подается на ХВО. В адсорбере 39 газ проходит поочередно через перфорированные корзины 46, заполненные гранулированным доменным шлаком 47, в которых за счет основных свойств доменного шлака, происходит адсорбция его компонентов, которые обладают кислыми свойствами (оксиды азота, оксиды углерода, оксиды серы), в результате чего газ очищается от вредных примесей, далее освобождается от уносимых капель конденсата в каплеотбойнике 44 и через патрубок 41 с давлением Р4 близким к атмосферному поступают на всас вентилятора высокого давления 48, снабженного коническим насадком 49 и расположенного на верхней отметке (например, на крыше котельной). Из вентилятора 48 очищенные и охлажденные дымовые газы с давлением РВ и температурой Т4 через конический насадок 49 выбрасываются в виде факела в атмосферу. Параллельно этому процессу насыщенный водяной пар с давлением Рп и температурой Тп из циклона 17 поступает в пароперегреватель 10, где происходит его нагрев до температуры Тпп значительно более высокой, чем Тп, после чего перегретый пар подается потребителю.

При падении активности адсорбента-гранулированного доменного шлака 47 его подвергают регенерации, которую осуществляют по мере необходимости. Процесс регенерации заключается в очистке поверхности и пор гранул шлака 47 от мелкодисперсных частиц и адсорбированных молекул вредных примесей и осуществляется путем их промывки промывочной водой (или очищенным конденсатом) из оросителя 45. Обратная промывочная вода, насыщенная кислотными компонентами и СО2, выводится из адсорбера 39 через патрубок выхода промывочной воды 43, откуда подается на ХВО. При механическом износе гранул шлака 47 его заменяют на свежий. Периодичность и продолжительность промывки, время замены адсорбента определяются опытным путем.

Количество и параметры пара, получаемого в контактном парогенераторе 1 с учетом его перегрева в пароперегревателе 10, сетевой воды нагреваемой в пластинчатом конденсаторе 23, степень очистки дымовых газов после адсорбера 39 зависят от вида топлива, количества и давления воды на выходе из сопла 14, создаваемого питательным насосом 8, теплопроизводительности и количества горелок (на фиг. 1-5 не показаны, площади поверхности экранных труб 2, теплового напряжения в топке 2, технологических параметров эжектора 11 и циклона 17. Так как в эжекторе 11 происходит смешение газообразных продуктов сгорания с питательной водой, в них присутствуют пары питательной воды и пары воды, образовавшейся при сжигании топлива. Поэтому при конденсации образовавшейся парогазовой смеси в конденсаторе 23 при противоточном движении парогазовой смеси и сетевой воды увеличивается температурный напор, интенсифицируется процесс теплопередачи [А. А. Щукин и др. Теплотехника - М.: Металлургия, 1973, с. 203]. В результате вышеперечисленных факторов образуется количество конденсата большее, чем поступило питательной воды на величину конденсата от паров воды, образовавшейся при сжигании топлива, что обеспечивает повышение КПД, создает замкнутый цикл водоснабжения КТГУ и снижает выбросы вредных компонентов и парниковых газов в атмосферу. Кроме того, использование доменного шлака в качестве адсорбента для очистки дымовых газов позволяет значительно снизить выбросы вредных веществ в атмосферу при минимальных затратах на процесс очистки. Сам гранулированный доменный шлак представляет собой мелкозернистый материал в виде пористых стекловидных или кристаллических гранул со средним размером (2-8) и более мм. Плотность шлака, в зависимости от состава, составляет 2,8-3,0 г/см3, твердость зерен 5-8кгс/см2. Химический состав шлака, в зависимости от состава исходной руды и вида выплавляемого чугуна, изменяется в широких пределах: СаО - 30-49%; АL2О3 - 4,5-20%; SiO2 - 33-44%; Fe2O3 - 0.3-0.8%; MgO - 1.5-15%; MnO - 0.3-3.0%. Основные характеристики доменного шлака: пористость, основность, гидравлические свойства, активность [ГОСТ 3476-74 Шлаки доменные и электротермофосфатные гранулированные для производства цементов. - М.: ИПК Изд-во стандартов, 1976. - с.5]. Так как удаляемые из дымовых газов вредные примеси (NOx, COх и пр.) имеют кислые свойства, для процесса очистки дымовых газов используется доменный шлак с модулем основности М>1.

Таким образом, предлагаемая комплексная теплогенерирующая установка обеспечивает получение пара и горячей воды без хвостовых поверхностей и дымовой трубы с использованием технологических и конструктивных преимуществ конструкции контактного парогенератора с пароперегревателем, эжектора и циклона, для очистки продуктов сгорания от вредных компонентов в качестве адсорбента гранулированного доменного шлака и автономной подпиткой водоснабжения, что увеличивает ее экономическую и экологическую эффективность.

Комплексная теплогенерирующая установка, содержащая контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, сверху корпус топки соединен с приемной камерой эжектора, диффузор которого соединен с циклоном, патрубок отвода парогазовой смеси которого соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего из расположенных сверху вниз пирамидального парогазового коллектора, снабженного парогазовым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионноустойчивого материала, образующие вертикальные парогазовые и горизонтальные водные каналы, причем парогазовый коллектор соединен через парогазовые каналы сверху вниз с газовым коллектором и пирамидальным днищем, снабженными газовым патрубком и конденсатным патрубком, соответственно, а водные каналы соединены справа и слева с входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, вентилятор высокого давления, напорный патрубок которого снабжен коническим насадком, отличающаяся тем, что сверху корпус топки контактного парогенератора соединен с конвекционным газоходом, в котором размещен пароперегреватель, соединенный с патрубком выхода пара циклона, сам конвекционный газоход соединен сверху с приемной камерой эжектора, в пластинчатом конденсаторе перед выходным газовым патрубком в газовом коллекторе установлен каплеотбойник, а входной и выходной водяные коллекторы расположены справа снизу и слева сверху теплообменного короба, газовый патрубок газового коллектора соединен с корпусом адсорбера, снабженного патрубками входа и выхода очищенного газа, патрубками входа и выхода промывочной воды, причем в полости адсорбера сверху вниз расположены каплеотбойник, ороситель, соединенный с патрубком входа промывочной воды и, в шахматном порядке, перфорированные корзины, заполненные гранулированным доменным шлаком, а патрубок выхода очищенных газов соединен с вентилятором высокого давления.



 

Похожие патенты:

Изобретение относится к теплоснабжению и теплоэнергетике, в частности к насосам для циркуляции теплоносителя в отопительных системах, и может быть использовано в автономных системах теплоснабжения. Газовая насосная станция характеризуется блочной конфигурацией, содержит двигатель внутреннего сгорания, насос консольный, блок управления станцией, теплотехническое оборудование, включающее теплообменник для утилизации тепла с охлаждением двигателя и теплообменник для утилизации тепла дымовых газов, с возможностью циркуляции воды через систему утилизации тепла с охлаждением двигателя и дымовых газов за счет перепада давления на вращаемом сетевом консольном насосе, при этом частота вращения от двигателя к насосу повышена за счет ременной передачи.

Изобретение относится к области энергетики. Котельная установка содержит котел с газоходом уходящих газов и газоходом рециркуляции уходящих газов, подключенным к газоходу уходящих газов, дымососом и дымовой трубой, дутьевой вентилятор, регенеративный воздухоподогреватель, дымосос рециркуляции уходящих газов.

Изобретение относится к области теплоэнергетики и может быть использовано в котельных установках, работающих на природном газе. Котельная установка содержит горелку с подключенными к ней трубопроводом подвода топлива и воздуховодом, газоход уходящих газов с включенным в него дымососом, к воздуховоду перед горелкой котла подключен трубопровод продувочной воды, а в газоход уходящих газов между топкой котла и дымососом включен конденсатор содержащихся в уходящих газах водяных паров, включенный по охлаждающей среде в трубопровод исходной воды перед деаэратором и связанный с деаэратором конденсатопроводом.

Изобретение относится к области теплоэнергетики и может быть использовано в котельных установках, работающих на природном газе. Котельная установка с барабаном и топкой содержит горелку с трубопроводами подвода топлива и воздуха, подключенными к топке котла, газоход уходящих газов, подключенный к топке котла, и включенный в него дымосос, к трубопроводу подвода топлива перед горелкой котла подключен трубопровод продувочной воды, а в газоход уходящих газов между топкой котла и дымососом включен конденсатор содержащихся в уходящих газах водяных паров, включенный по охлаждающей среде в трубопровод исходной воды перед деаэратором и связанный с деаэратором конденсатопроводом.

Изобретение относится к области теплоэнергетики. Способ аварийного ремонта газовой котельной заключается в том, что при аварии газового котла в котельной, имеющей как минимум один котел, запорную арматуру, за пределы котельной заранее выносятся фланцы, имеющие возможность подсоединения к соответствующим фланцам временно заменяющего как минимум одного мобильного котла, с использованием гибких подводов газа, сжатого воздуха для продувки котла, теплоносителя, холодной и нагретой воды, а также электрических соединений для синхронизации работы со штатным оборудованием котельной и запала горелок, причем временно заменяющий как минимум один котел монтируется на прицепе грузового автомобиля и устанавливается на минимально допустимом расстоянии от котельной с последующим отключением после ввода штатного отремонтированного котла или котлов в работу.

Настоящее изобретение относится к энергетике, к задаче прямого преобразования тепловой энергии в электрическую посредством термоэлектрической и термоэлектронной эмиссии, в частности к получению электрической энергии за счет тепла газов, образующихся при термохимическом преобразовании топлива, и может быть использовано для снабжения электроэнергией и теплом отдельных зданий промышленной и индивидуальной застройки, в металлургии, транспорте и других отраслях промышленности.

Техническое решение относится к парогенераторам АЭС и барабан-сепараторам АЭС, ТЭС. Парогенератор, в верхней части в корпуса 1 которого расположено сепарационное устройство, а над теплообменными элементами размещен погружной перфорированный щит 3.

Изобретение относится к энергетическим установкам, предназначенным для выработки парогазовых смесей. Парогазогенератор содержит охлаждаемую балластирующим компонентом камеру, смесительную головку, включающую в себя блок подачи компонентов топлива, блок подачи балластирующего компонента с огневым днищем, в котором выполнены сквозные каналы, форсунки, установленные по концентрическим окружностям и состоящие из полого наконечника, соединенного с полостью одного из компонентов топлива, форкамеры, охватывающей с кольцевым зазором наконечник, при этом внутренняя полость форкамеры сообщается с одной стороны с полостями компонентов топлива, а с другой с полостью камеры, на наружной поверхности форкамеры выполнены ребра, причем балластирующий компонент поступает в полость камеры по кольцевым каналам, образованным форкамерами и сквозными каналами огневого днища.

Изобретение относится к энергетике и может быть использовано в котельных установках, работающих на природном газе. Технический результат - повышение экономичности котельной установки путем увеличения теплопроизводительности.

Изобретение относится к энергетическим системам, в которых применяются органические циклы Ренкина для производства электрической энергии при сжигании различных видов топлива. В качестве теплоутилизационной парогенераторной установки используют установку на основе органического цикла Ренкина с электрогенератором, а в качестве промежуточного контура использования теплоты отработанных газов газовой турбины используют замкнутый контур с диатермическим маслом, который имеет в своем составе два теплообменника и циркуляционный насос, при этом через один теплообменник проходит линия отвода отработанных газов газовой турбины, а через второй теплообменник - линия установки на основе органического цикла Ренкина, при этом к электрогенератору установки на основе органического цикла Ренкина подключены внутренние потребители электрической энергии газоперекачивающей станции.
Наверх