Генератор импульсов ионизации

Изобретение относится к области лазерной техники для мощных электроразрядных газовых лазеров импульсно-периодического действия с несамостоятельным тлеющим разрядом с импульсной емкостной ионизацией. Генератор импульсов ионизации дополнительно содержит три реле, второй тумблер и перемычку, первый резистор соединен с третьим контактом первого реле, первый контакт реле с аналоговым сигналом управления частотой импульсного режима, второй контакт с первым повторителем напряжения, второй резистор с третьим контактом второго реле, первый контакт реле с аналоговым сигналом управления коэффициентом заполнения импульсного режима, второй контакт с компаратором, третий резистор с третьим контактом третьего реле, первый контакт реле с аналоговым сигналом управления мощностью излучения лазера от устройства управления или технологического устройства в зависимости от положения перемычки, а второй контакт с вторым повторителем напряжения, один полюс катушки 1-го, 2-го и 3-го реле соединены с третьим контактом второго тумблера, второй полюс катушки 1-го, 2-го и 3-го реле и второй контакт второго тумблера соединены с общей точкой – землей, первый контакт второго тумблера соединен с положительным напряжением питания. Технический результат - возможность изменять параметры излучения в процессе лазерной обработки с помощью устройства управления. 1 ил.

 

Изобретение относится к области лазерной техники и может быть использовано при создании мощных технологических электроразрядных лазеров импульсно-периодического действия на углекислом газе и окиси углерода с несамостоятельным тлеющим разрядом с импульсной емкостной ионизацией, например ([1] с. 165-169).

Известна схема управления мощностью излучения газового лазера, содержащая блок управления мощностью с резонатором. Управление производится путем изменения оптической среды резонатора. Это устройство не позволяет управлять мощностью излучения лазера пропорционально частоте импульсов ионизации (Способ управления мощностью излучения газового лазера, SU 1806475 A3, H01S3/104, 1995).

Наиболее близким к заявляемому техническому решению является генератор импульсов ионизации (Генератор импульсов ионизации, SU 2750851 C1, H01S3/104, 2021).

Недостатком указанного решения является то, что такой генератор обеспечивает работу лазера только с предварительно установленными параметрами излучения: мощностью излучения в непрерывном режиме или частотой, коэффициентом заполнения и мощностью излучения в импульсно-периодическом режиме. На выходе второго повторителя 5 формируется импульсный сигнал с частотой, коэффициентом заполнения и амплитудой заданными резисторами R1, R2 и R3 соответственно. При коэффициенте заполнения 100% генератор вырабатывает постоянное напряжение регулируемой амплитуды, и режим работы лазера становится непрерывным. Амплитуда импульсов задает мощность излучения лазера. Это ограничивает технологические возможности лазера, не позволяя изменять параметры излучения непосредственно в процессе лазерной обработки материалов. Например, для начала лазерной сварке алюминия необходимо увеличить мощность излучения до порогового значения, иначе процесс проплавления может вообще не начаться. Это объясняется высоким коэффициентом отражения алюминия и его высокой теплопроводностью. После начала процесса плавления коэффициент отражения резко снижается и нужно уменьшить мощность излучения в зависимости от требуемой глубины проплавления. ([2] с. 174-175). В случае кислородной резки, при обходе острых углов необходимо уменьшать мощность излучения или переходить в импульсно-периодический режим для предотвращения выгорания металла в области тонких элементов ([3] с. 97).

Техническая задача выражается в расширении технологических возможностей лазера, позволяя изменять параметры излучения непосредственно в процессе лазерной обработки.

Поставленная задача достигается тем что в генератор импульсов ионизации, содержащем генератор частоты ионизации, последовательно соединенный с источником ионизации лазера, имеющим приемник излучения, шесть резисторов, ограничитель мощности излучения, ограничитель сигнала управления, пороговую схему, генератор низкой частоты, четыре повторителя, усилитель, тумблер, измеритель мощности излучения, два формирователя, компаратор, ключ и преобразователь напряжение-частота, причем первый резистор соединен с входом первого повторителя напряжения, второй резистор соединен с первым входом компаратора, третий резистор связан с входом второго повторителя напряжения, первый повторитель напряжения последовательно соединен с преобразователем напряжение-частота, выход которого связан со вторым входом компаратора, выход которого соединен с управляющим входом ключа, выход которого соединен с выходом второго повторителя, который последовательно соединен с входом третьего повторителя, при этом четвертый резистор, соединен с входом ограничителя мощности излучения, пятый резистор связан с входом ограничителя сигнала управления, шестой резистор соединен с входом пороговой схемы, при этом выход ограничителя мощности излучения соединен с входом третьего повторителя, выход которого соединен с первым контактом тумблера и первым входом усилителя, второй вход которого соединен с выходом измерителя мощности излучения, а выход связан с входом четвертого повторителя напряжения, выход которого соединен с выходом ограничителя сигнала управления и вторым контактом тумблера, третий контакт которого связан с выходом пороговой схемы и входом генератора частоты ионизации, выход которого соединен с входами первого и второго формирователей, выходы которых соединены с источником ионизации лазера, выход приемника излучения которого соединен с входом измерителя мощности излучения, введены три реле, второй тумблер и перемычка, причем первый резистор соединен с третьим контактом первого реле, первый контакт которого соединен с аналоговым сигналом управления частотой импульсного режима, а второй контакт соединен с входом первого повторителя напряжения, второй резистор соединен с третьим контактом второго реле, первый контакт которого соединен с аналоговым сигналом управления коэффициентом заполнения импульсного режима, а второй контакт соединен с первым входом компаратора, третий резистор соединен с третьим контактом третьего реле, первый контакт которого соединен с аналоговым сигналом управления мощностью излучения лазера от устройства управления или технологического устройства в зависимости от положения перемычки, а второй контакт соединен с входом второго повторителя напряжения, причем один полюс катушки первого, второго и третьего реле соединены с третьим контактом второго тумблера, а второй полюс катушки первого, второго и третьего реле и второй контакт второго тумблера соединены с общей точкой - землей, а первый контакт второго тумблера соединен с положительным напряжением питания.

Таким образом возможно изменять параметры излучения непосредственно в процессе лазерной обработки с помощью устройства управления или технологического устройства, например координатного стола, портала, вращателя или робота.

Краткое описание чертежей. На фигуре изображена схема предложенного устройства, где 1 - первый повторитель напряжения, 2 - преобразователь напряжение-частота, 3 - компаратор, 4 - генератор низкой частоты, 5 - второй повторитель напряжения, 6 - ключ, 7 - ограничитель мощности излучения, 8 - третий повторитель напряжения, 9 - измеритель мощности излучения, 10 - усилитель, 11 - четвертый повторитель напряжения, 12 - ограничитель сигнала управления, 13 - пороговая схема, 14 - генератор частоты ионизации, 15 - первый формирователь импульсов, 16 - второй формирователь импульсов, 17 - лазер с источником ионизации, R1, R2, R3, R4, R5, R6 - переменные резисторы, SA1, SA2 - тумблеры, S1 перемычка, К1, К2, К3 катушки реле с контактами К1.1, К2.1, К3.1 соответственно.

Осуществление изобретения. Конструкция устройства в статическом состоянии содержит генератор частоты ионизации, последовательно соединенный с источником ионизации лазера, имеющим приемник излучения, а также шесть резисторов, ограничитель мощности излучения, ограничитель сигнала управления, пороговую схему, генератор низкой частоты, четыре повторителя, усилитель, тумблер, измеритель мощности излучения, два формирователя, компаратор, ключ и преобразователь напряжение-частота к которым добавляются три реле, второй тумблер и перемычка.

Генератор низкой частоты 4 включает первый повторитель напряжения 1, второй повторитель напряжения 5, преобразователь напряжение-частота 2, компаратор 3, ключ 6, переменные резисторы R1, R2, R3, перемычку S1 и контакты К1.1, К2.1, К3.1 реле К1, К2, К3 соответственно. Переменные резисторы R1, R2, R3 представляют собой регулировочные резисторы СП5-35Б ([4] с. 263-265). Повторители напряжения 1, 5, 8, 11 используются в качестве буфера (преобразователя сопротивления), обладая большим входным и малым выходным сопротивлениями. Повторители напряжения 1, 5, 8, 11 реализованы на базе операционного усилителя КР140УД708 ([5] с. 160). Преобразователь напряжение-частота реализован на базе операционных усилителей КР140УД608, К553УД2 и транзистора КП302АМ ([6] с. 119 схема 4). Компаратор 3 представляет собой однопороговую схему сравнения, реализованную на базе операционного усилителя К553УД2 ([5] с. 213-214). Ключ 6, представляет собой транзисторный ключ, реализованный на транзисторе КТ3102БМ ([5] с. 90-92). Реле К1, К2, К3 реализованы на реле РЭС-55А ([7] с. 586-589). Перемычка S1 представляет собой проволочную перемычку, которая может быть установлена в двух положениях 1-3 или 2-3. Переменные резисторы R4, R5, R6 представляют собой регулировочные резисторы СП3-30к ([4] с. 217-222). Ограничители 7, 12 представляет собой диодный ограничитель на диоде КД 521А, управляемый компаратором, реализованным на операционном усилителе КР140УД708 ([5] с. 74, с 213-214). Измеритель мощности излучения 9 представляет собой дифференциальный усилитель сигнала приемника излучения лазера 17, реализованный на операционном усилителе 153УД5 ([5] с. 166).

Усилитель 10 представляет собой инвертирующий усилитель, реализованный на операционном усилителе КР140УД608 ([5] с. 157-159). Тумблеры SA1, SA2 реализованы на тумблере МТ1. Пороговая схема 13 представляет собой транзисторный ключ на транзисторе КТ3102БМ, управляемый компаратором на операционном усилителе К553УД2 ([5] с. 90-92, 213-214). Генератор частоты ионизации 14 реализован по схеме аналогичной генератору низкой частоты 4 и настроен на генерацию импульсов с изменяемой частотой 500-5000 Гц и скважностью 50%. Формирователи импульсов 15, 16 представляют собой компараторы, реализованные на операционных усилителях К553 УД2 ([5] с. 213-214). Лазер 17 представляет собой лазер комбинированного действия «Лантан-3» ([1] с. 165-169).

Действие устройства основано на том, что генератор низкой частоты 4 формирует импульсы частотой 10-500 Гц с регулируемым коэффициентом заполнения и амплитудой 0-10 В. При коэффициенте заполнения 100% генератор вырабатывает постоянное напряжение регулируемой амплитуды, и режим работы лазера становится непрерывным. Амплитуда импульсов задает мощность излучения лазера.

Для работы лазера в режиме с предварительно установленными параметрами лазерного излучения (наладочный режим), тумблер SA2 переводится в первое положение НАЛ, реле К1, К2 и К3 включены, их вторые контакты соединены с третьими (К1.1, К2.1 и К3.1) и подключены к переменным резисторам R1, R2 и R3 соответственно.

Переменный резистор R1 через буфер на первом повторителе 1 задает напряжение, определяющее частоту импульсного режима, которое поступает на вход преобразователя напряжение-частота 2. На выходе преобразователя напряжение-частота 2 формируется пилообразное напряжение амплитудой 0-10 В, которое поступает на вход 2 компаратора 3. Переменный резистор R2 задает напряжение определяющее коэффициент заполнения, которое поступает на вход 1 компаратора 3. На выходе компаратора 3 формируются прямоугольные импульсы с частотой и коэффициентом заполнения определяемыми резисторами R1 и R2 соответственно, которые поступают на управляющий вход ключа 6. Переменный резистор R3 через буфер на втором повторителе напряжения 5 задает напряжение, определяющее мощность излучение лазера, которое шунтируется на землю ключом 6 с частотой и коэффициентом заполнения определяемыми резисторами R1 и R2. Таким образом, на выходе второго повторителя 5 формируется импульсный сигнал с частотой, коэффициентом заполнения и амплитудой заданными резисторами R1, R2 и R3 соответственно.

Для работы лазера в режиме изменения параметров излучения непосредственно в процессе лазерной обработки (технологический режим), тумблер SA2 переводится во второе положение ТЕХ, реле К1, К2 и К3 выключены, их вторые контакты соединены с первыми (К1.1, К2.1 и К3.1) и подсоединены к аналоговым сигналам F ИППР, К ЗАП И УПР W соответственно. Частота импульсного режима задается аналоговым сигналом F ИППР, коэффициент заполнения импульсного режима - аналоговым сигналом К ЗАП, а мощность излучения лазера - аналоговым сигналом УПР W или УПР W ВН. Перемычка S1 позволяет управлять мощностью излучения лазера либо аналоговым сигналом управления от системы управления УПР W (положение перемычки S1 1-3), либо аналоговым сигналом управления от технологического устройства УПР W ВН (положение перемычки S1 2-3), например координатного стола, портала, вращателя или робота. Работа лазера в режиме изменения параметров излучения непосредственно в процессе лазерной обработки расширяет технологические возможности лазера.

Ограничитель мощности излучения 7 ограничивает максимальную мощность излучения W, определяемую амплитудой импульсов, при проведении наладочных работ и возникновении аварийных ситуаций, повышая надежность работы лазера. Переменный резистор R4 задает напряжение, определяющее максимальное значение мощности излучения лазера Wмакс. Ограничитель мощности излучения 7 ограничивает напряжение на входе третьего повторителя 8 на уровне W< Wмакс. Выходной сигнал Уст W с выхода третьего повторителя напряжения 8, задающий мощность лазерного излучения и параметры импульсно-периодического режима, поступает на неинвертирующий вход 1 усилителя 10 и контакт 1 тумблера SA1. Положение тумблера SA1 определяется режимом работы лазера.

При работе лазера в импульсно-периодическом режиме тумблер SA1 устанавливается в положение 1. В этом случае выходной сигнал Уст W с выхода третьего повторителя напряжения 8 поступает непосредственно на вход генератора частоты ионизации 14, задавая мощность лазерного излучения и параметры импульсно-периодического режима. Автоматическая регулировка мощности излучения в импульсно-периодическом режиме отсутствует.

При работе лазера в непрерывном режиме тумблер SA1 может быть установлен в положение 1 или 2. В положении 1 выходной сигнал Уст W с выхода третьего повторителя напряжения 8 поступает на вход генератора частоты ионизации 14, задавая мощность лазерного излучения. Автоматическая регулировка мощности излучения отсутствует. Если тумблер SA1 установлен в положение 2, то на вход генератора частоты ионизации 14 поступает сигнал с выхода четвертого повторителя напряжения 11. Сигнал Уст W с выхода третьего повторителя напряжения 8 подается на неинвертирующий вход 1 усилителя 10. На инвертирующий вход 2 усилителя 10 подается сигнал с измерителя мощности лазерного излучения 9. На вход измерителя мощности лазерного излучения 9 подается сигнал с приемника излучения лазера 17. Усилитель 10, включенный по схеме инвертирующего усилителя, усиливает разность этих сигналов и через четвертый повторитель напряжения 11 выдает управляющий сигнал Упр F, задающий частоту импульсов ионизации, на вход генератора частоты ионизации 14. Таким образом, осуществляется автоматическая регулировка мощности излучения в непрерывном режиме работы лазера, что расширяет его технологические возможности.

Ограничитель сигнала управления 12 ограничивает максимальную частоту импульсов ионизации при возникновении аварийных ситуаций, повышая надежность работы лазера. Переменный резистор R5 задает напряжение, определяющее максимальное значение частоты ионизации лазера Fмах. Ограничитель сигнала управления 12 ограничивает напряжение на входе повторителя 11 на уровне F< Fмах.

Пороговая схема 13 предназначена для включения-выключения генератора частоты ионизации 14 с порогового значения сигнала управления Упр F. Это повышает помехозащищенность лазера, исключая срабатывание генератора частоты ионизации 14 от помех. Переменный резистор R6 задает напряжение, определяющее пороговое значение частоты ионизации лазера F пор. Пороговая схема 13 обеспечивает надежное включение-выключение генератора с частоты F>Fпор. Управляемый напряжением генератор частоты ионизации 14 вырабатывает импульсы ионизации Fпор<F< Fмах частотой 500-5000 Гц и скважностью 50%.

Первый формирователь импульсов 15 и второй формирователь импульсов 16 формируют импульсы Вых F1 и Вых F2 по фронту и спаду импульсов ионизации соответственно. Эти импульсы поступают на тиратроны источника ионизации лазера 17, которые формируют высоковольтные импульсы ионизации. Формирователи импульсов 15, 16 обеспечивают подачу только импульсов определенной длины на тиратрон, повышая надежность его работы. Формирование двух серий импульсов ионизации Вых F1 и Вых F2 позволяет повысить частоту следования импульсов ионизации, применяя два тиратрона в источнике ионизации, что расширяет технологические возможности лазера.

Таким образом, предложенное устройство расширяет технологические возможности лазера.

Список литературы

1. Технологические лазеры. Справочник. В 2 т. / под общ. ред. Г.А. Абильситова. - М.: Машиностроение, 1991. - Т. 1. - 432 c.

2. Лазерная техника и технология. В 7 кн. Кн. 5. Лазерная сварка металлов: Учеб. пособие для вузов / под ред. А.Г. Григорьянца. - М.: Высш. шк., 1988. - 207 с.

3. Лазерная техника и технология. В 7 кн. Кн. 7. Лазерная резка металлов: Учеб. пособие для вузов / под ред. А.Г. Григорьянца. - М.: Высш. шк., 1988. - 127 с.

4. Резисторы. Справочник. / под общ. ред. И.И. Четверткова и В.М. Терехова. - М.: Радио и связь, 1987. - 352 с.

5. Искусство схемотехники. В 2 т. / П. Хоровиц, У. Хилл. - М.: Мир, 1984. - Т. 1. - 598 с.

6. Применение прецизионных аналоговых ИС. / А.Г. Алексенко и др. - М.: Радио и связь, 1981. - 224 с.

7. Справочная книга радиолюбителя-конструктора. / Под ред. Н.И.Чистякова. - М.: Радио и связь, 1990. - 624 с.

Генератор импульсов ионизации, содержащий генератор частоты ионизации, последовательно соединенный с источником ионизации лазера, имеющим приемник излучения, шесть резисторов, ограничитель мощности излучения, ограничитель сигнала управления, пороговую схему, генератор низкой частоты, четыре повторителя, усилитель, тумблер, измеритель мощности излучения, два формирователя, компаратор, ключ и преобразователь напряжение-частота, причем первый резистор соединен с входом первого повторителя напряжения, второй резистор соединен с первым входом компаратора, третий резистор связан с входом второго повторителя напряжения, первый повторитель напряжения последовательно соединен с преобразователем напряжение-частота, выход которого связан со вторым входом компаратора, выход которого соединен с управляющим входом ключа, выход которого соединен с выходом второго повторителя, который последовательно соединен с входом третьего повторителя, при этом четвертый резистор соединен с входом ограничителя мощности излучения, пятый резистор связан с входом ограничителя сигнала управления, шестой резистор соединен с входом пороговой схемы, при этом выход ограничителя мощности излучения соединен с входом третьего повторителя, выход которого соединен с первым контактом тумблера и первым входом усилителя, второй вход которого соединен с выходом измерителя мощности излучения, а выход связан с входом четвертого повторителя напряжения, выход которого соединен с выходом ограничителя сигнала управления и вторым контактом тумблера, третий контакт которого связан с выходом пороговой схемы и входом генератора частоты ионизации, выход которого соединен с входами первого и второго формирователей, выходы которых соединены с источником ионизации лазера, выход приемника излучения которого соединен с входом измерителя мощности излучения, отличающийся тем, что в генератор импульсов ионизации введены три реле, второй тумблер и перемычка, причем первый резистор соединен с третьим контактом первого реле, первый контакт которого соединен с аналоговым сигналом управления частотой импульсного режима, а второй контакт соединен с входом первого повторителя напряжения, второй резистор соединен с третьим контактом второго реле, первый контакт которого соединен с аналоговым сигналом управления коэффициентом заполнения импульсного режима, а второй контакт соединен с первым входом компаратора, третий резистор соединен с третьим контактом третьего реле, первый контакт которого соединен с аналоговым сигналом управления мощностью излучения лазера от устройства управления или технологического устройства в зависимости от положения перемычки, а второй контакт соединен с входом второго повторителя напряжения, причем один полюс катушки первого, второго и третьего реле соединены с третьим контактом второго тумблера, а второй полюс катушки первого, второго и третьего реле и второй контакт второго тумблера соединены с общей точкой – землей, а первый контакт второго тумблера соединен с положительным напряжением питания.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении керамических изоляторов и вращателей Фарадея, предназначенных для устранения обратного поляризованного излучения в лазерах. Сначала смешивают в молярной пропорции: оксид тербия Tb4O7 - не менее 80% и остальное – по меньшей мере один из оксидов иттрия, скандия, циркония, лантана или лантаноидов.

Изобретение относится к системам высокочастотной накачки газовых лазеров с поперечным разрядом, к двухтактному автогенератору для высокочастотной накачки активной среды газового лазера щелевого типа. Автогенератор накачки газового лазера содержит первое плечо и второе плечо, каждое из которых содержит высокочастотный транзисторный модуль, цепь согласования, вход питания, с возможностью соединения с источником питания и выход питания, выполненный с возможностью соединения с одним из электродов симметричной электродной системы излучателя лазера.

Изобретение относится к области физики газового разряда, в частности, к газовым проточным лазерам и может быть использовано при создании высокомощных лазеров с высоким качеством излучения. Разрядная камера проточного газового лазера выполнена в виде единой конструкции из кварца, представляет собой три пары взаимно перпендикулярных трубок, на одной паре трубок установлены электроды основного заряда, концы которых выполнены в виде пластин, параллельных газовому потоку, а торцы второй пары закрыты оптическими окнами, третья пара служит для организации прямо направленного газового потока.

Лазер может применяться при обработке материалов, маркировке продукции, в медицине, при преобразовании частоты излучения. Цельноволоконный импульсный лазер состоит из коротковолнового лазера 1, резонатор которого образованного двумя волоконными брэгговскими решетками (ВБР) 2 и 3, и длинноволнового лазера 4, активная среда которого является насыщающимся поглотителем.

Изобретение относится к приборам для генерации с использованием стимулированного излучения когерентных электромагнитных волн и может быть использовано в квантовых устройствах для генерирования, стабилизации, модуляции, демодуляции или преобразования частоты, использующих стимулированное излучение в инфракрасной области спектра, а именно к цельно-волоконным перестраиваемым по частоте узкополосным лазерам с регулируемой шириной спектральной линии, предназначенным для генерирования, усиления, модуляции, демодуляции или преобразования частоты волоконных лазеров.

Изобретение относится к твердотельным лазерным усилителям с системой охлаждения и может быть использовано в усилителях на дисковых активных элементах с охлаждением газом/жидкостью, циркулирующим/циркулирующей по замкнутому контуру. Съемная кассета для усилительного модуля содержит активные элементы в оправах, основания, элементы крепления к усилительному модулю, входные гидродинамические профили и выходные гидродинамические профили со стабилизаторами, при этом дополнительно оснащена входными и выходными направляющими потока, на которых выполнены соответственно входные и выходные гидродинамические профили.

Изобретение относится к области электротехники, в частности к системам для передачи оптической энергии для последующего преобразования в другую форму энергии. Технический результат заключается в создании комплекса с системой распределения электроэнергии и преобразовании энергии в лазерное излучение с передачей его на приемную поверхность преобразователя тепловой энергии в электрическую.

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой.

Способ может быть использован при дистанционной поверке ориентации оптической оси инфракрасного болометра и амплитудно-импульсных характеристик его электронного тракта в инфракрасной оптоэлектронике, системах поверки и настройки устройств быстродействующего теплового контроля скоростных объектов и визуального целиуказания инфракрасного луча.

Изобретение относится к квантовой электронике. Способ генерации непрерывного когерентного излучения терагерцового диапазона заключается в том, что осуществляют взаимодействие направленного возбуждающего излучения с активной средой образца; при этом в качестве упомянутой активной среды используют низкотемпературную плазму в газовой смеси ксенона с гелием, в которой нарабатываются метастабильные атомы ксенона в состоянии Xe(ls5); помещают упомянутую активную среду в терагерцовый резонатор; в качестве упомянутого направленного возбуждающего излучения используют излучение с длиной волны 980 нм или 904,5 нм, благодаря чему осуществляют оптическую накачку перехода в атомах ксенона, соответственно ls5 → 2р10 либо ls5 → 2р9 с последующей столкновительной релаксацией в состояние 2р10; получают упомянутое непрерывное когерентное излучение с частотой 2,52 ТГц, генерируемое на переходе 2р10 → ls2, вследствие инверсной заселенности состояний Хе(2р10) и Xe(ls2), возникающей в результате упомянутой оптической накачки.

Изобретение относится к лазерной технике и может быть использовано в лазерах высокой мощности. Задачей изобретения является теплоотводящий элемент, обеспечивающий повышение эффективности теплоотвода от лазерного кристалла дискового лазера. Технический результат достигается за счет того, что теплоотводящий элемент дискового лазера выполнен в виде пластины из композиционного материала, содержащего алмаз 55-75% об, карбид кремния 20-40% об. и кремний 3-12% об., а на одной из поверхностей пластины нанесен слой кремния толщиной 30-800 мкм, отшлифованный до чистоты поверхности Ra не менее 0,01 мкм. Реализация предлагаемого технического решения позволяет создать теплоотводящий элемент дискового лазера, обеспечивающий эффективную теплопередачу от лазерного кристалла к теплоносителю. Высокая жесткость теплоотводящего элемента, за счет высокого модуля упругости композиционного материала, обеспечивает его стабильность к деформациям, что важно для повышения эффективности дискового лазера. 3 з.п. ф-лы, 1 ил.
Наверх