Применение синтетических цеолитов для увеличения селективности при получении 4,4-диметил-1,3-диоксана (варианты)

Изобретение относится к области основного органического и нефтехимического синтеза и может быть использовано в производстве 4,4-диметил-1,3-диоксана путем конденсации трет-бутанола и формальдегида. Предложены синтетические цеолиты общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA с диаметром пор 4 или Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА с диаметром пор 5 в качестве гетерогенных сокатализаторов. При этом синтез ДМД проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора. Технический результат: увеличение селективности образования 4,4-диметил-1,3-диоксана. 2 н. и 1 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к гетерогенным пористым сокатализаторам конденсации трет-бутанола и формальдегида, которые могут быть использованы для синтеза 4,4-диметил-1,3-диоксана.

Одним из наиболее распространенных промышленных способов получения изопрена является диоксановый метод через промежуточный синтез 4,4-диметил-1,3-диоксана (ДМД). ДМД получают жидкофазной конденсацией изобутиленсодержащих фракций С4, с формальдегидом, используемым в виде 20-40% водного раствора, с последующим выделением диметилдиоксана из реакционной массы [Огородников С.К., Идлис Г.С. Производство изопрена. Л: Химия, 1973 стр. 48-58]. Принципиальным недостатком данного способа является низкая селективность процесса. Выход высококипящих побочных продуктов (ВПП) составляет 440-460 кг на 1 тонну изопрена, более 90% которых составляют ВПП со стадии синтеза диметилдиоксана.

Известен способ получения 4,4-диметил-1,3-диоксана из изобутилена и формальдегида при температуре 100-110°С в присутствии серной кислоты. Недостатком данного способа является высокая коррозионная агрессивность реакционной среды и необходимость дополнительной обработки масляного слоя раствором щелочи [Авторское свидетельство СССР №361174, МПК C07D 319/06, опубл. 07.12.1972].

Известен способ получения 4,4-диметил-1,3-диоксана из изобутилена и формальдегида при температуре 100-110°С в присутствии серной кислоты. Недостатком данного способа является высокая коррозионная агрессивность реакционной среды и необходимость дополнительной обработки масляного слоя раствором щелочи [Авторское свидетельство СССР №361174, МПК C07D 319/06, опубл. 07.12.1972].

Известны способы получения ДМД в водной среде из изобутилена и формальдегида с использованием в качестве катализатора карбоновой кислоты [Патент Франции №2490642, МПК C07D 319/06, опубл. 26.03.1982], соли полисульфокислоты и металла I или II группы [Патент Франции №2490643, C07D 319/06, опубл. 26.03.1982], щавелевой кислоты [Авторское свидетельство СССР №991715, МПК C07D 319/06, опубл. 27.12.1999; Патент РФ №2255936, МПК C07D 319/06, опубл. 10.07.2005].

Известен способ получения ДМД из формальдегида и изобутилена при весовом соотношении 1,1-1,2 в водном растворе при 90-110°С и давлении 17-25 атм. в присутствии щавелевой кислоты. Для повышения селективности по ДМД за счет снижения образования побочных продуктов и потерь изобутилена, в зону реакции возвращают 3-6% триметилкарбинола ТМК в расчете на ДМД и 5-20% ДМД от получаемого количества. По мнению авторов, возврат ТМК в зону реакции позволяет уменьшить образование эфиров ТМК с компонентами ВПП и одновременно замедлить протекание реакции гидролиза ДМД с образованием ВПП [Патент РФ №2062270, МПК C07D 319/06, С07С 31/12, опубл. 20.06.1996].

Недостатком перечисленных способов получения ДМД является недостаточная селективность по целевому ДМД из-за образования ВПП вследствие плохой взаимной растворимости бутиленсодержащих фракций и водного слоя, содержащего катализатор и формальдегид.

Известен способ получения 4,4-диметил-1,3-диоксана (ДМД) [Патент РФ №2330848, МПК C07D 319/06, опубл. 10.08.2008] конденсацией водного раствора формальдегида при мольном соотношении формальдегид/изобутилен, равном (1,5-1,6):1 при температуре 80-110°С в присутствии фосфорной кислоты, взятой в качестве катализатора и поверхностно-активных веществ (ПАВ) как сокатализаторов. Снижение селективности образования целевого ДМД, значительный расход ПАВ из-за постоянного уноса ПАВ с реакционной смесью являются основными недостатками указанного способа.

Известен способ получения изопрена, формальдегида и изобутилена [Авторское свидетельство СССР №460720, МПК С07С 11/18, С07С 47/04, С07С 11/09, С07С 1/20, опубл. 30.01.1983] расщеплением высококипящих побочных продуктов синтеза диметилдиоксана над окисью алюминия при повышенной температуре, при этом пары продуктов расщепления дополнительно контактируют с кальцийфосфатным катализатором при 300-400°С в присутствии водяного пара.

Известно использование гетерогенного катализатора для синтеза 4,4-диметил-1,3-диоксана из изобутилена и формальдегида [Авторское свидетельство СССР №1163902, МПК B01J 23/78, С07С 11/18, опубл. 30.01.1983], включающий алюмосиликат, дополнительно содержащий оксиды железа, магния, кальция и титана. Известный катализатор обеспечивает расщепление высококипящих побочных продуктов синтеза ДМД. Небольшой срок службы катализатора и низкий выход ДМД являются основными недостатками двух ранее представленных способов.

Задачей предлагаемого изобретения является увеличение селективности при получении ДМД.

Решение поставленной задачи достигается путем применения синтетического цеолита общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA с диаметром пор 4 , а также синтетического цеолита общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА с диаметром пор 5 в качестве гетерогенных сокатализаторов для увеличения селективности образования 4,4-диметил-1,3-Диоксана при конденсации трет-бутанола и формальдегида. При этом синтез ДМД проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора.

Сутью изобретения является то, что для увеличения селективности образования ДМД в реакционную смесь дополнительно вводят синтетические цеолиты в качестве гетерогенного сокатализатора при синтезе ДМД в присутствии фосфорной кислоты, взятой в качестве базового катализатора. Использование синтетических цеолитов общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA с диаметром пор 4 или общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА с диаметром пор 5 обеспечивает более высокую степень превращения исходных реагентов - трет-бутанола и формальдегида - увеличению селективности образования ДМД из-за снижения образования высококипящих побочных продуктов в виде гидрированных пиранов (ГП).

Рассматриваемый процесс конденсации трет-бутанола и формальдегида с образованием ДМД относится к числу гетерогенных жидкофазных каталитических реакций. Раздел фаз в реакторе, обусловленный взаимной нерастворимостью водного слоя, содержащего формальдегид и катализатор, и органического, содержащего трет-бутанол, является основной проблемой процесса конденсации трет-бутанола с формальдегидом. Для решения этой проблемы и увеличения химического сродства компонентов гетерогенной смеси предлагается использование пористых сокатализаторов с определенным диаметром пор. Введение в реакционную массу пористых сокатализаторов с определенным диаметром пор обеспечивает более интенсивное протекание реакции конденсации трет-бутанола с формальдегидом, способствует увеличению выхода ДМД и снижению образования ГП.

В настоящее время синтетические цеолиты применяются очистки газов, разделения многокомпонентных смесей, в процессах крекинга и реформинга и выпускаемые промышленностью, путем термической обработки водно-щелочных алюмосиликатных смесей.

Осуществление предлагаемого способа получения ДМД иллюстрируют приведенные ниже примеры.

Пример 1 (для сравнения, без сокатализатора).

В реактор вносят фосфорную кислоту концентрацией 81% Н3РО4 в количестве 5,0- 5,5% от массы реакционной смеси и проводят процесс конденсации формальдегида и трет-бутанола, взятых в мольном отношении формальдегид : трет-бутанол, равном 1,8:1 в течение 1 часа. Температура процесса 125°С, давление 6 атм. Затем масляный и водный слои отдельно подвергают дальнейшей переработке. Из масляного слоя ДМД выделяют экстракцией. Получают ДМД с выходом 39% от теоретического возможного количества, молярное отношение ДМД/ВПП составляет 2,8:1.

Пример 2. В реактор вносят фосфорную кислоту концентрацией 81% Н3РО4 в количестве 5,0-5,5%) от массы реакционной смеси и синтетический цеолит общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA по ТУ 2163-003-05766557-97 с диаметром пор 4 в количестве 3,5-5,0%) от массы реакционной смеси, проводят процесс конденсации формальдегида и трет-бутанола, взятых в мольном отношении формальдегид : трет-бутанол, равном 1,8:1 в течение 1 часа. Температура процесса 125°С, давление 6 атм. Затем масляный и водный слои отдельно подвергают дальнейшей переработке. Из масляного слоя ДМД выделяют экстракцией. Получают ДМД с выходом 76,0% от теоретического возможного количества. Высококипящие побочные продукты, в том числе гидрированные пираны в реакционной массе отсутствуют.

Пример 3. В реактор вносят фосфорную кислоту концентрацией 81% Н3РО4 в количестве 5,0-5,5% от массы реакционной смеси и синтетический цеолит общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА по ТУ 2163-004-05766557-97 с диаметром пор 5 в количестве 3,5-5,0% массы от реакционной смеси, проводят процесс конденсации формальдегида и трет-бутанола, взятых в мольном отношении формальдегид : трет-бутанол, равном 1,8:1 в течение 1 часа. Температура процесса 125°С, давление 6 атм. Затем масляный и водный слои отдельно подвергают дальнейшей переработке. Из масляного слоя ДМД выделяют экстракцией. Получают ДМД с выходом 86,0% от теоретического возможного количества. Высококипящие побочные продукты, в том числе гидрированные пираны в реакционной массе отсутствуют.

Эффективны синтетические цеолиты общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA с диаметром пор 4 или общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА с диаметром пор 5 как сокатализаторы для селективного образования ДМД. Оптимальным является содержание пористого сокатализатора в количестве 3,5-5,0 мас. % от реакционной массы.

Целесообразность выбранных пределов показателей технологического процесса конденсации представлена в таблице 1. Условия синтеза ДМД: содержание фосфорной кислоты в количестве 5,0-5,5% от массы реакционной смеси, мольное соотношение формальдегид : трет -бутанол = 1,8:1, температура 125°С, давление 6 атм, продолжительность синтеза 1 час.

Использование синтетического цеолита марки КА общей формулы К12[(AlO2)12(SiO2)12]⋅xH2O с диаметром пор 3 , а также марки NaX общей формулы Na86[(AlO2)86(SiO2)106]⋅xH2O с диаметром пор 9 ведет к уменьшению выхода и селективности образования целевого ДМД.

Использование синтетических цеолитов общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA с диаметром пор 4или общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА с диаметром пор 5 в качестве пористого сокатализатора позволяет повысить селективность процесса образования ДМД за счет уменьшения количества образующихся высококипящих побочных продуктов, в том числе гидрированных пиранов. Применение для процесса синтетических цеолитов с диаметрами пор 4 или 5 в количестве меньше, чем 3,5% масс, приводит к значительному снижению выхода ДМД, а более чем 5,0% мас. - не приводит к увеличению выхода ДМД, но обуславливает дополнительный расход реагента.

1. Применение синтетического цеолита общей формулы Na12[(AlO2)12(SiO2)12]⋅xH2O марки NaA с диаметром пор 4 в качестве гетерогенного сокатализатора для увеличения селективности образования 4,4-диметил-1,3-диоксана при конденсации трет-бутанола и формальдегида.

2. Применение синтетического цеолита общей формулы Ca4,5Na3[(AlO2)12(SiO2)12]⋅xH2O марки СаА с диаметром пор 5 в качестве гетерогенного сокатализатора для увеличения селективности образования 4,4-диметил-1,3-диоксана при конденсации трет-бутанола и формальдегида.

3. Применение синтетических цеолитов по пп. 1 и 2, отличающееся тем, что синтез 4,4-диметил-1,3-диоксана проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора.



 

Похожие патенты:

Изобретение относится к органической химии, конкретно к получению 1-(5-метил-1,3-диоксана-5-ил)этанола, который может применяться для получения биоактивных препаратов. Способ заключается в том, что гидрирование 1-(5-метил-1,3-диоксана-5-ил)этанона проводят в присутствии катализатора Pd/C при температуре 150°С в течение 0,5 часов.

Настоящее изобретение относится к способу разложения пластичного полиформальдегидного материала (ПОМ) на нефтяной основе с использованием биомассы. Предлагаемый способ включает следующие стадии: равномерное смешение полученного из биомассы спирта, полиформальдегида и катализатора в растворителе и герметизация смеси; при этом катализатор выбран из H2SO4, Cu(OTf)2, In(OTf)3, Zn(OTf)2, Co(OTf)3, Ni(OTf)3, Cd(OTf)2, Tl(OTf)3, Cr(OTf)3, Fe(OTf)3, Zr(OTf)4, K(OTf), Li(OTf), Ca(OTf)2, Mg(OTf)2, Nd(OTf)3, Ce(OTf)3, Y(OTf)3, Yb(OTf)3, La(OTf)3, Er(OTf)3, а растворитель из метанола, бутанола, изопропанола, трет-бутанола, ацетона, этилацетата, циклогексана, изооктана, дихлорметана, дихлорэтана, хлороформа, четыреххлористого углерода и ДМСО (диметилсульфоксида) и перемешивание и нагрев герметизированной смеси до 40°C-100°C для осуществления реакции в течение 2-8 часов, охлаждение продукта реакции до комнатной температуры естественным образом и извлечение продукта.

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к применению пористого полиариленфталида в качестве гетерогенного сокатализатора в количестве 3,5-5,0 мас.% от реакционной массы при образовании 4,4-диметил-1,3-диоксана путем конденсации трет-бутанола и формальдегида.

Изобретение относится к способам получения органических соединений, а именно к способу получения 1,3-диоксациклоалкилсодержащих азоокисей указанной ниже общей формулы. Способ заключается в восстановлении нитроарил-1,3-диоксациклоалканов общей формулы под действием 200 мол.% глюкозы в присутствии гидроокиси натрия в водно-этанольной среде при 50°С в течение 2 ч.

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к способу получения 4,4-диметил-1,3-диоксана (ДМД) путем конденсации трет-бутанола с водным раствором формальдегида в присутствии фосфорной кислоты при повышенных температуре и давлении и последующего выделения ДМД из реакционной массы, при этом конденсацию проводят в присутствии цеолита NaA с диаметром пор 4 Å или СаА с диаметром пор 5 Å, содержание которых выдерживают в количестве 3,5-5,0 мас.% от реакционной массы.

Изобретение относится к применению углеродных нанотрубок с диаметром пор 7-11 в качестве гетерогенного сокатализатора в процессе производства 4,4-диметил-1,3-диоксана (ДМД) путем конденсации трет-бутанола и формальдегида. При этом синтез ДМД проводят в присутствии фосфорной кислоты, взятой в качестве базового кислотного катализатора.

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к способу получения 4,4-диметил-1,3-диоксана (ДМД) путем конденсации трет-бутанола с водным раствором формальдегида в присутствии фосфорной кислоты при повышенных температуре и давлении и последующего выделения ДМД из реакционной массы, при этом конденсацию проводят в присутствии пористого полиариленфталида, содержание которого выдерживают в количестве 3,5-5 мас.% от реакционной массы.

Изобретение относится к области основного органического и нефтехимического синтеза, а именно к способу получения 4,4-диметил-1,3-диоксана (ДМД) из трет-бутанола и формальдегида путем конденсации трет-бутанола с водным раствором формальдегида в присутствии фосфорной кислоты при повышенных температуре и давлении и последующего выделения ДМД из реакционной массы, при этом конденсацию проводят в присутствии углеродных нанотрубок с диаметром пор 7-11 Å, содержание которого выдерживают в количестве 3,5-5 мас.

Изобретение относится к способу получения 5-тозилометил-2,2'-диметил-5-нитро-1,3-диоксана, который может найти применение в качестве исходного вещества в реакциях нуклеофильного замещения. Способ заключается во взаимодействии 5-гидроксиметил-2,2'-диметил-5-нитро-1,3-диоксана с тозилхлоридом при 20-25°С в присутствии катализатора – третичного амина.
Настоящее изобретение относится к способу переработки побочных продуктов синтеза 4,4-диметил-1,3-диоксана, образующихся при получении 4,4-диметил-1,3-диоксана из изобутилена и формальдегида и/или веществ, являющихся их источниками, при разложении на алюмосиликатсодержащем катализаторе при температуре 400-480°С в присутствии водяного пара, включающему предварительное смешение исходного продукта с водным слоем жидкофазного синтеза изопрена, последующий гидролиз полученной смеси при повышенной температуре, испарение полученного гидролизата в токе водяного пара при повышенной температуре и давлении, подачу образовавшегося газа на каталитическое разложение.

Изобретение относится к способу производства изопрена из изобутилена и формальдегида в водной среде в присутствии водорастворимой кислоты в реакторе с тремя зонами превращений с последующим разделением продуктов синтеза на рецикловые продукты, возвращаемые в начало процесса, отходы и товарный изопрен, при котором синтез изопрена осуществляют дегидратацией метилбутандиола при температуре 120-150°С в водной фазе в присутствии кислоты, а перед дегидратацией водную фазу подвергают глубокой очистке от формальдегида в противоточном реакционно-экстракционном аппарате при температуре 60-110°С с использованием инертного по отношению к кислоте, формальдегиду, изобутилену и спиртам растворителя.
Наверх