Способ получения нанокристаллического порошка кремния

Изобретение относится к получению наноразмерного порошка кремния газофазным методом. Предложен способ получения нанокристаллического порошка кремния, включающий испарение капли расплавленного кремния в высокочастотном электромагнитном поле противоточного индуктора, в котором она находится в состоянии левитации. Унос паров кремния в зону конденсации и охлаждения обеспечивают нисходящим ламинарным потоком газа-носителя аргона. Непрерывность получения нанокристаллического порошка кремния обеспечивается восполнением испаряемой капли равномерной подачей в нее монокристаллического кремниевого стержня. Технический результат – предложенный способ позволяет получить нанокристаллический порошок кремния со средним размером частиц менее 20 нм в непрерывном режиме экологически безопасным способом и возможностью регулировать размер частиц. 3 ил., 3 пр.

 

Изобретение относится к области нанотехнологий и наноматериалов, а именно к получению наноразмерных порошков кремния газофазным методом, и может быть использовано в производстве литий-ионных батареях, солнечных панелях и лакокрасочных покрытиях.

Известен способ получения чистого кремния, предложенный в патенте RU № 2327639, C01B. Сущность предлагаемого способа получение кремния высокой чистоты заключается во взаимодействии диоксида кремния с чистым кремнием при температуре 1900°C с образованием газообразного монооксида кремния. Восстановление газообразного полученного монооксида кремния до элементарного кремния ведут при температуре 2300-2500°C в среде чистого метана. Данный метод позволяет получать продукт с малым содержанием примесей и высоким выходом.

Данное техническое решение не позволяет получать наноразмерный порошок кремния. Также проведение реакций при высоких температурах в среде чистого метана усложняет аппаратное оформление и приводит к повышенной взрывоопасности.

Известен способ получения порошков кремния разложением силана, при воздействии на него излучения СО2 лазера в газодинамическом реакторе (US 2013/0189161). В данном способе с помощью специального сопла формируют газовую струю силана в реакторе, лазерный луч фокусируют в пятно диаметром 2 мм под соплом на расстоянии 1 мм. Луч лазера расположен перпендикулярно по отношению к оси струе силана. Готовый порошок собирают фильтром в конце реакционной камеры. Данный способ позволяет получать наночастицы кремния размером 10 нм или меньше, с производительностью около 80 мг/ч. Структура наноразмерных порошков кремния зависит от соотношения скоростей потоков силана и аргона и от температуры, при которой проходит синтез.

Главным недостатком является низкий выход порошков нанокристаллической структуры, максимально описанный в патенте составляет 0,7 г/ч. Также использование в качестве предшественника кремния моносилана, который является взрывоопасным, делает данный способ потенциально опасным в производстве.

Наиболее близким предлагаемому изобретению является решение, предложенное в патенте RU № 2359906, C01B (прототип). В данном изобретении кремний подается в поток плазмообразующего газа под давлением 1,5-2 атм с постоянной скоростью, затем кремний испаряется в плазме СВЧ-разряда при температуре 4000-6000°C, после с помощью газообразного хладогента атомный пар конденсируется и собирается на специальном фильтре. Таким образом исходный кремний преобразуется в нанодисперсный порошок с кристаллической структурой. Данный способ позволяет получать нанокристаллический кремний размера 2-30 нм с выходом более 50%, остальной порошок представлен фракцией с размером частиц до 100 нм при скорости подачи кремниевого порошка 1 г/мин, что свидетельствует о плохой монодисперсности получаемого продукта.

Данный способ обладает рядом недостатков, которые вызывают трудности для его применения в промышленности. Одним из таких недостатков является размер исходного порошка кремния, он не должен превышать 20 мкм. Получить такой размер можно, использовав длительный механический размол, что обуславливает большую вероятность внесения загрязнений в исходное высокочистое сырье. Другим недостатком является то, что полученные частицы имеют большой разброс по размерам и данный способ не позволяет управлять размерами получаемых частиц кремния.

Технической задачей заявляемого изобретения является получение нанокристаллического порошка кремния со средним размером частиц менее 20 нм в непрерывном режиме экологически безопасным способом с высокой производительностью и возможностью регулировать средний размер частиц.

Поставленная задача решается путем разработки способа получения нанокристаллического порошка кремния в реакторе с вертикальной ориентацией, в пространство которого помещают противоточный индуктор под которым устанавливают омический нагреватель, сверху в область нагревателя опускают монокристаллический кремниевый стержень с затравкой на конце в виде шара и производят предварительный нагрев кремния для увеличения его электропроводимости, затем предварительно разогретую затравку помещают в высокочастотное поле противоточного индуктора и нагревают кремний в высокочастотном электромагнитном поле до температуры плавления, расплавленную каплю подвешивают в состоянии левитации между витками противоточного индуктора и испаряют в замкнутом непрерывном ламинарном потоке газа-носителя. Унос атомного пара в зону конденсации, затем в зону охлаждения с последующим сбором на фильтре обеспечивают тем же потоком газа-носителя. Восполнение испаряемой капли осуществляют непрерывной равномерной подачей монокристаллического кремниевого стержня.

Схема осуществления предлагаемого способа получения нанокристаллического порошка кремния приведена на фиг1. В круглый реактор 1, изготовленный из кварцевой трубки или другого диэлектрического материала помещают монокристаллический кремниевый стержень 2 с затравкой на конце в виде шара таким образом, чтобы затравка была в области омического нагревателя 3. Нагревателем 3 предварительно нагревают затравку до 700-900°C, затем разогретую затравку помещают в область высокочастотного 440 кГц электромагнитного поля противоточного индуктора 4 и нагревают до температуры плавления. На конце стержня 2 получают каплю 5 расплавленного кремния. Полученную каплю 5 подвешивают в область между витками индуктора 4 в состоянии бесконтактной левитации за счет уравновешивания сил, действующих на нее, и обеспечивают беспрерывное испарение кремния. Нисходящим ламинарным потоком газа-носителя 6, осуществляют унос паров в область конденсации 7 и охлаждения 8. Охлажденные нанокристаллические частицы кремния улавливают фильтром. Восполнение испаряющейся капли осуществляют непрерывной равномерной подачей монокристаллического кремниевого стержня сверху, в качестве газа-носителя и газа-охладителя используют инертный газ аргон. Абсолютное давление в зоне реактора поддерживают равным 105 - 5*104 Па, расход газа-носителя аргона составляет 0,3 -1,2 м3/ч., непрерывную равномерную подачу монокристаллического кремниевого стержня в каплю осуществляют со скоростью 3 -5 г/ч. При других условиях осуществления процесса технический результат не достигается

Осуществление заявляемого способа получения нанокристаллического порошка кремния поясняется следующими фигурами.

Фиг1. - схема устройства для предлагаемого способа получения нанокристаллического порошка кремния, где 1 - реактор, 2 - монокристаллический кремниевый стержень, 3 - омический нагреватель, 4 - противоточный индуктор, 5 - капля расплавленного кремния, 6 - ламинарный поток газа-носителя, 7 - область конденсации, 8 - область охлаждения.

Фиг.2 - изображение, полученное посредством сканирующей электронной микроскопии полученных нанокристаллических частиц кремния,

Фиг.3. - распределение нанокристаллических частиц кремния по размерам.

Достижение технического результата подтверждается следующим примерами:

Пример 1.

При осуществление заявляемого способа восполнение капли ведут со скоростью введения монокристаллического кремниевого стержня в каплю равной 3 г/ч. В качестве газа-носителя используют аргон, абсолютное давление в зоне кварцевой трубки поддерживают равным 105 Па, а расход газа-носителя поддерживают равным 1,2 м3/ч.

Полученный продукт представляет собой нанокристаллический порошок кремния в свободно-насыпном виде со средним размером частиц <D> = 8 нм. Выход нанокристаллического порошка кремния составляет 98 % от скорости восполнения капали. Характеристики нанопорошка кремния, полученного в условиях Примера 1, представлены на фиг. 2.

Пример 2.

Заявляемый способ ведут в условиях Примера 1, но скорость подачи кремниевого стержня составляет 5 г/ч, а расход газа носителя поддерживают равный 0,3 м3/ч.

Полученный продукт представляет собой нанокристаллический порошок частиц кремния в свободно-насыпном виде со средним размером <D> = 16 нм. Выход нанокристаллического порошка кремния составил 96 % от скорости восполнения капали.

Пример 2 демонстрирует возможность регулирования получаемых частиц кремния изменяя скорость ввода кремниевого стержня и расходом газа-носителя.

Пример 3.

Заявляемый способ ведут в условиях Примера 1, но абсолютное давление в зоне реактора поддерживают равным 5*104 Па. Полученный продукт в условиях Примера 3 представляет собой нанокристаллический порошок частиц кремния в свободно-насыпном виде со средним размером <D> = 4 нм. Выход нанокристаллического порошка кремния составил 97 % от скорости восполнения капали.

Пример 3 демонстрирует, что регулировать размер получаемых частиц кремния можно изменением давления в зоне реактора.

Из приведенных примеров видно, что разработанный способ позволяет регулировать размер получаемых нанокристаллических частиц кремния и является экологически безопасным, так как при получении нанокристаллических частиц кремния не образуются вредные химические соединения. При этом выход нанокристаллического порошка кремния выше, чем известно из других технических решений.

Способ получения нанокристаллического порошка кремния, включающий испарение кремния и конденсацию в наночастицы кристаллической структуры с последующим охлаждением, отличающийся тем, что испарение ведут из предварительно нагретой до 700-900 °C, затем расплавленной капли кремния, подвешенной в высокочастотном 440 кГц электромагнитном поле противоточного индуктора, унос паров кремния в зону конденсации и охлаждения осуществляют нисходящим ламинарным потоком газа-носителя аргон, абсолютное давление в зоне реактора поддерживают равным 105 – 5•104 Па, расход газа-носителя аргона составляет 0,3 -1,2 м3/ч., восполнение испаряющейся капли осуществляют непрерывной равномерной подачей монокристаллического кремниевого стержня со скоростью 3 -5 г/ч.



 

Похожие патенты:

Изобретение относится к технологии получения кремниевого сырья разных сортов: солнечного качества (99,9999% Si), высокочистого кремния (99%+ Si) и обычного металлического кремния (96-99% Si) путем восстановления кальций-силикатного шлака с помощью источника алюминия. Один из вариантов получения металлического кремния включает: (I) объединение диоксида кремния и оксида кальция в сосуде при температуре, достаточной для образования расплавленного кальций-силикатного шлака; (II) введение источника металлического алюминия в расплавленный кальций-силикатный шлак для восстановления кальций-силикатного шлака до металлического Si и образования кальций-алюминатного шлака; (III) отделение металлического Si от кальций-алюминатного шлака; и необязательно (IV) дальнейшую очистку металлического Si; где стадию восстановления (II) проводят в ряду печей для восстановления, в которых указанный шлак перемещают в противоточном направлении относительно металлического Si, или где стадию восстановления (II) проводят в ряду печей, в которых кальций-силикатный шлак перемещают в противоточном направлении относительно металлического Al.

Изобретение относится к технологии получения полупроводниковых материалов. Способ выращивания нитевидных кристаллов кремния включает подготовку кремниевой пластины путем нанесения на ее поверхность частиц катализатора из двухкомпонентного сплава металл-кремний эвтектического состава с последующим помещением в ростовую печь, нагревом, подачей в газовую фазу водорода и тетрахлорида кремния, осаждением кремния из газовой фазы по схеме пар → жидкая капля → кристалл при температуре, минимально превышающей температуру эвтектики.

Изобретение относится к области высокотемпературной электрохимии и может быть использовано при изготовлении солнечных батарей из кремниевых пластин, изготовленных по методу Чохральского. Способ включает катодную поляризацию кремниевой пластины путем помещения кремниевой пластины в расплав K2WO4 – Na2WO4 – WO3 и подачи на нее катодного потенциостатического импульса величиной от –920 до –1020 мВ относительно платинокислородного электрода сравнения.

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4 водным раствором фторида аммония NH4F исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, при этом водный раствор фторида аммония NH4F используют концентрацией, равной 40%.

Изобретение относится к получению двумерного кристаллического материала, такого как графен (варианты) или другого двумерного кристаллического материала, такого как силицен, а также получения множества выложенных в стопу слоев двумерного кристаллического материала, получения гетероструктуры, гетероструктурного материала, содержащих двумерный кристаллический материал.

Изобретение относится к химической технологии получения волокнистого кремния и может найти применение для использования в порошковой металлургии, литий-ионных источниках тока, преобразователях солнечной энергии, полупроводниковых приборах, таких как термоэлектрические преобразователи, тензодатчики и переключатели.

Изобретение относится к области нанотехнологий, наноэлектроники и микроэлектроники. Способ определения концентрации электрически активной донорной примеси в поверхностных слоях кремния, включающий процедуру регистрации характеристических рентгеновских эмиссионных Si L2.3 спектров сильнолегированного кремния при концентрации электрически активной донорной примеси ND≥1018 см-3 в области валентной зоны кремния и в области примесной подзоны электрически активных доноров с помощью неразрушающего метода ультрамягкой рентгеновской эмиссионной спектроскопии, отличается тем, что регистрацию рентгеновских эмиссионных спектров проводят при напряжении U=3 кВ на аноде разборной рентгеновской трубки спектрометра монохроматора, при плотности анодного тока 2 мА/см2 с определением относительной интенсивности ID донорного максимума, находящегося в рентгеновском эмиссионном Si L2.3 спектре выше потолка валентной зоны кремния при энергии Е=100 эВ, соответствующей концентрации электрически активной донорной примеси в поверхностных слоях толщиной ≤120 нм сильнолегированного кремния, определяемой по логарифмической зависимости относительной интенсивности донорного максимума от концентрации электрически активной донорной примеси, описываемой следующим соотношением: ID=A⋅lgND+B, где ID - относительная интенсивность донорного максимума в рентгеновском эмиссионном Si L2.3 спектре; ND - концентрация электрически активной донорной примеси; А и В - эмпирические константы, которые равны 0,1 и -1,94 соответственно.

Изобретение относится к технологии полупроводниковых материалов и может быть использовано в производстве поликристаллического кремния. Способ включает получение хлористого водорода из хлора и водорода; получение трихлорсилана в реакторе кипящего слоя металлургического кремния с катализатором с использованием синтезированного хлористого водорода и оборотного хлористого водорода из системы конденсации после водородного восстановления трихлорсилана с образованием парогазовой смеси 1, содержащей хлорсиланы и водород; конденсацию хлорсиланов из парогазовой смеси 1 с получением конденсата 1 и с отделением водорода; ректификационное разделение хлорсиланов из конденсата 1 и их очистку; переработку тетрахлорида кремния в трихлорсилан; водородное восстановление очищенного трихлорсилана в реакторах осаждения с получением поликристаллического кремния и парогазовой смеси 2, содержащей хлорсиланы, водород и хлористый водород; конденсацию хлорсиланов из парогазовой смеси 2 с получением конденсата 2 и с отделением водорода и хлористого водорода; ректификационное разделение хлорсиланов из конденсата 2 и их очистку; переработку кремнийсодержащих отходов с получением диоксида кремния и раствора хлорида натрия, при этом для получения хлора используют электролиз раствора хлорида натрия, полученного при переработке кремнийсодержащих отходов, с одновременным получением водорода, который направляют на получение хлористого водорода, и раствора гидроксида натрия, который направляют в систему переработки отходов; для получения хлористого водорода используют неосушенные хлор и водород из системы электролиза хлора и дополнительный водород из водородной станции, причем процесс синтеза хлористого водорода ведут с одновременной абсорбцией его водой и дальнейшим выделением газообразного хлористого водорода на колонне отгонки - стриппинга, с одновременным получением соляной кислоты, которую направляют в систему переработки отходов; прямой синтез трихлорсилана и переработку тетрахлорида кремния в трихлорсилан ведут совместно в реакторе, в который, кроме металлургического кремния с катализатором и хлористого водорода, подают водород, выделенный из парогазовой смеси 1, часть водорода, выделенного из парогазовой смеси 2, водород из водородной станции, очищенный после ректификационного разделения конденсата 1 тетрахлорид кремния и основную часть тетрахлорида кремния после ректификационного разделения конденсата 2; в процессе водородного восстановления кремния в реактор подают трихлорсилан, очищенный после ректификационного разделения хлорсиланов из конденсата 1, трихлорсилан, очищенный после ректификационного разделения хлорсиланов из конденсата 2, и оборотный водород из системы конденсации 2, при этом температурный градиент в пространстве от зоны охлаждения стенки реактора до нагревателей снижают до 250-300°С за счет введения композиционных тепловых экранов; дихлорсилан после ректификационного разделения конденсата 1 и ректификационного разделения конденсата 2 выводят в систему конверсии дихлорсилана в трихлорсилан, из которой трихлорсилан затем возвращают на ректификационное разделение хлорсиланов из конденсата 1 и их очистку.

Изобретение относится к технологии получения кремния методом Чохральского для электронной техники и фотоэнергетики. Разогретый рабочий газ внутри камеры 3 направляют вверх параллельно вертикальной оси камеры 3 и, не проходя над расплавом 2, выводят через регулируемые клапаны 13, расположенные в верхней части боковой поверхности камеры 3, выше уровня тигля 8, при этом одновременно с основным газовым потоком в верхнюю часть камеры 3 подают вспомогательный поток горячего рабочего газа от отдельного источника в объемах, необходимых для поддержания постоянной скорости потока газа, траекторию движения которого формируют направляющим колодцем 5 и который выдавливает образующую над расплавом 2 парогазовую смесь через узкий зазор между поверхностью расплава 2 и основанием направляющего колодца 5, при этом основной поток рабочего газа, двигающийся снизу вверх, увлекает за собой парогазовую смесь и эвакуирует ее через регулируемые клапаны 13 к устройствам откачки.

Изобретение относится к технологии получения полупроводниковых материалов для создания автоэмиссионных электронных приборов (с «холодной эмиссией электронов) для изготовления зондов и кантилеверов сканирующих зондовых микроскопов и оперативных запоминающих устройств с высокой плотностью записи информации, поверхностно-развитых электродов электрохимических ячеек источников тока, а также для использования в технологиях изготовления кремниевых солнечных элементов нового поколения для повышения эффективности антиотражающей поверхности фотопреобразователей.

Изобретение относится к получению наноразмерных упорядоченных частиц кремния при электролизе расплавленных солей, который может быть использован для изготовления анодов на основе кремния при создании новых безопасных литий-ионных аккумуляторов с улучшенными энергетическими характеристиками. Способ включает электролиз расплава KCl с кремнийсодержащей добавкой K2SiF6 при температуре 790-800°C.
Наверх