Датчик перемещения



Датчик перемещения
Датчик перемещения
Датчик перемещения

Владельцы патента RU 2777515:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Петербургский государственный университет путей сообщения Императора Александра I" (RU)

Изобретение относится к области электрических измерений неэлектрических величин, в частности перемещений, и может использоваться в системах мониторинга технического состояния зданий и сооружений. Датчик перемещения содержит корпус, измерительный элемент в виде струны с постоянным натяжением, подвижный элемент, воспринимающий перемещение с помощью тяг, связанный с первым подвижным наконечником, выполненным в виде полого цилиндра с отверстиями в торцах цилиндра, в которых установлена струна с возможностью перемещения по скользящей посадке, выделяющих внутри цилиндра участок струны постоянной длины. На образующей цилиндра первого наконечника в средней его части расположен первый преобразователь натяжения струны в электрический сигнал. Под первым рабочим участком струны, расположенным за пределом цилиндра первого наконечника, размещен второй преобразователь, закрепленный на корпусе датчика перемещения. Под вторым рабочим участком струны, расположенным за пределом цилиндра первого наконечника, размещен третий преобразователь. Между корпусом датчика перемещения и вторым подвижным наконечником в поджатом состоянии расположена пружина, с наружным центрированием, обеспечивающим ее пространственное положение. Технический результат - повышение точности измерения перемещения. 6 ил.

 

Изобретение относится к области электрических измерений неэлектрических, в частности перемещений, величин и может использоваться в системах мониторинга технического состояния зданий и сооружений.

Известен датчик перемещений, содержащий корпус, измерительный элемент в виде струны с постоянным натяжением, подвижный элемент, воспринимающий перемещение и с помощью тяг, связанный с наконечником, выполненным в виде полого цилиндра с отверстиями в торцах цилиндра, в которых установлена струна с возможностью перемещения по скользящей посадке, выделяющим внутри цилиндра участок струны постоянной длины. На образующей цилиндра в средней его части расположен преобразователь натяжения струны в электрический сигнал. Под рабочими участками струны, расположенными за пределами цилиндра, размещены два преобразователя измеряемой величины в электрический сигнал, при этом герметизация корпуса осуществлена за счет сильфона (SU №583371, G01B 17/04, G01L 1/10, 05.12.1977).

Основным недостатком данного изобретения является то, что регистрация измеряемых перемещений возможна только при включенной вторичной аппаратуре. В интервалах времени, при выключенной или поврежденной вторичной аппаратуре, получение информации от датчика перемещения прекращается. Однако в этих интервалах времени как раз и возможны превышения максимальных значений перемещений строительных конструкций от их предельно допустимых значений, что может привести к разрушениям и не предсказуемым последствиям.

Известен датчик перемещения, содержащий корпус с измерительным элементом в виде струны с постоянным натяжением, подвижный элемент, воспринимающий перемещение и с помощью тяг, связанный с первым наконечником, выполненным в виде полого цилиндра с отверстиями в торцах цилиндр, в которых установлена струна с возможностью перемещения по скользящим посадкам, выделяющим внутри цилиндра участок струны постоянной длины, на образующей цилиндра в средней его части расположен первый преобразователь натяжения струны в электрический сигнал, под первым и вторым рабочими участками струны, расположенными за пределами цилиндра первого наконечника, размещены второй и третий преобразователи измеряемой величины в электрический сигнал, причем второй преобразователь закреплен на корпусе датчика перемещения, герметизация корпуса датчика перемещения осуществлена за счет сильфона, датчик перемещения снабжен вторым подвижным наконечником в виде полого цилиндра с закрепленным на нем храповиком реечного типа, собачка и прижимная пружина которого закреплены на корпусе датчика перемещения, а третий преобразователь закреплен в полости второго подвижного наконечника, который имеет соосные с основным подвижным наконечником отверстия, в одном из которых имеется скользящая посадка, выделяющая второй рабочий участок струны (RU №2685803, G01L 1/10, 23.04.2019).

Существенным недостатком известного датчика перемещения является то, что второй подвижный наконечник имеет определенную массу и соответственно обладает пропорциональной ей инерционностью. Следовательно, при ускорениях или резком прекращении измеряемого перемещения, второй подвижный элемент по инерции продолжит движение даже при отсутствии перемещения, что приведет к погрешности измерения.

Задачей заявляемого технического решения является создание датчика перемещения, в котором компенсируется инерционность второго наконечника, что повышает точность измерения перемещения

Технический результат достигается тем, что в датчике перемещения, содержащем корпус, измерительный элемент в виде струны с постоянным натяжением, подвижный элемент, воспринимающий перемещение и с помощью тяг, связанный с первым наконечником, выполненным в виде полого цилиндра с отверстиями в торцах цилиндра, в которых установлена струна с возможностью перемещения по скользящим посадкам, выделяющим внутри цилиндра участок струны постоянной длины, на образующей цилиндра первого наконечника в средней его части расположен первый преобразователь натяжения струны в электрический сигнал, под первым рабочим участком струны, расположенным за пределом цилиндра первого наконечника, размещен второй преобразователь измеряемой величины в электрический сигнал, закрепленный на корпусе датчика перемещения, под вторым рабочим участком струны, расположенным за пределом цилиндра первого наконечника, размещен третий преобразователь измеряемой величины в электрический сигнал, второй подвижный наконечник выполнен в виде полого цилиндра с закрепленным на нем храповиком реечного типа, собачка и прижимная пружина которого закреплены на корпусе датчика перемещения, а третий преобразователь измеряемой величины в электрический сигнал закреплен в полости цилиндра второго подвижного наконечника, который имеет соосные с первым подвижным наконечником отверстия, совпадающие с осью струны, в отверстии со стороны первого подвижного наконечника имеется скользящая посадка, выделяющая второй рабочий участок струны, для проводки кабелей от преобразователей измеряемой величины (перемещения) в электрический сигнал используются соосные отверстия в корпусе, а также в первом и втором подвижных элементах, герметизация корпуса датчика перемещения осуществлена за счет сильфона, между корпусом датчика перемещения и вторым наконечником в поджатом состоянии расположена пружина с наружным центрированием, обеспечивающим ее пространственное положение.

На фиг. 1 представлено положение элементов датчика перемещения в момент установки его на объект (момент времени t0), на фиг. 2 представлено положение элементов датчика перемещения при достижении максимально возможного перемещения, на фиг. 3 представлено положение элементов датчика перемещения при текущем значении перемещения, величина которого ниже максимального значения за весь предыдущий период измерения фиг. 4, фиг. 5, фиг. 6.

Корпус датчика перемещения (1) содержит измерительный элемент (2) в виде струны с постоянным натяжением, подвижный элемент (3), воспринимающий перемещение с помощью тяг (4), связанный с первым подвижным наконечником (5), выполненным в виде полого цилиндра с отверстиями (6) в торцах цилиндра, в которых установлена струна с возможностью перемещения по скользящим посадкам, выделяющим внутри цилиндра участок (7) струны постоянной длины На образующей цилиндра первого наконечника в средней его части расположен первый преобразователь (8) натяжения струны в электрический сигнал. Под первым рабочим участком струны (9), расположенным за пределом первого наконечника, размещен второй преобразователь (10) измеряемой величины в электрический сигнал, закрепленный на корпусе датчика перемещения (1). Под вторым рабочим участком струны (11), расположенным за пределом первого наконечника (5), размещен третий преобразователь (12) измеряемой величины в электрический сигнал. Между корпусом датчика перемещения (1) и вторым подвижным наконечником (14) в поджатом состоянии расположена пружина (30) с наружным центрированием, обеспечивающим ее пространственное положение. Герметизация корпуса (1) осуществлена за счет сильфона (13). Второй наконечник (14) выполнен в виде полого цилиндра с закрепленным на нем храповиком реечного типа (15), собачка (16) и прижимная пружина (17) которого закреплены на корпусе датчика перемещения (1), а третий преобразователь (12) измеряемой величины в электрический сигнал закреплен в полости цилиндра второго наконечника (14), который имеет соосные с первым наконечником (5) отверстия (20, 21, 22, 23, 25), при этом отверстия (21), совпадают с осью струны. В отверстии (21) со стороны первого наконечника (5) имеется скользящая посадка (24), выделяющая второй рабочий участок струны. Отверстие (18) в корпусе (1) выполнено соосно с отверстиями (20) и (23), а отверстие (19) выполнено соосно с отверстиями (22) и (25). Для проводки кабелей от преобразователей (8, 10, 12) измеряемой величины в электрический сигнал используются отверстия (26, 27, 28, 29).

Принцип работы датчика перемещения.

Выделенный участок струны (7) внутри первого наконечника (5) с помощью соосных отверстий (6) и расположенных в них скользящих посадок, аналогичных скользящей посадке (24), всегда остается постоянной длины, а частота его колебаний может изменяться только при изменении натяжения струны, которое должно быть стабильным, при этом этот участок струны совместно с преобразователем (8) используется для контроля стабильности струны.

Положение конструктивных элементов датчика перемещения в начальный момент времени t0 (в момент установки на объекте, когда перемещение ) представлено на фиг. 1-3.

На фиг. 4 представлена диаграмма изменения значения измеряемого параметра по значениям выходного сигнала второго преобразователя при постоянно включенной вторичной аппаратуре системы мониторинга, на фиг. 5 представлена диаграмма изменения максимального значения измеряемого параметра по значениям выходного сигнала третьего преобразователя, на фиг.6 представлена диаграмма изменения значения измеряемого параметра по значениям выходного сигнала второго преобразователя в случае отключения вторичной аппаратуры системы мониторинга на интервале времени t1 - t3.

При измерении перемещения (перемещении на некоторую величину ) подвижный элемент (3), жестко скрепленный с помощью тяг (4) с первым подвижным наконечником (5), перемещается относительно корпуса (1) на величину перемещений изменяя (увеличивая) рабочую длину первого рабочего участка струны (9) на величину перемещений На такую же величину сместится второй подвижный наконечник (14), уменьшив длину второго рабочего участка струны на такую же величину

Величину текущего значения перемещения определяют по частоте колебаний первого рабочего участка струны (9), а величину максимального значения перемещения - по частоте колебаний второго рабочего участка струны (11).

При этом второй наконечник (14) свободно перемещается относительно корпуса (1) датчика перемещения вместе с первым подвижным наконечником (5) до достижения максимального значения на момент проведения измерения Как только текущее значение перемещения начнет уменьшаться (в момент времени t1), сработает «собачка» храповика, зафиксировав максимальное значение перемещения за все время измерения, а первый подвижный наконечник (5) продолжит свое движение в сторону меньших значений перемещения. Если за все время последующих измерений значение перемещений не превысит величины положение второго подвижного наконечника (14) не изменится, а частота колебаний второго рабочего участка струны (11) будет оставаться постоянной, соответствующей значению перемещения в момент времени t1. При превышении значения перемещения величины т.е. значение перемещения начнет увеличиваться относительно своего значения в момент времени t1, первый подвижный наконечник (5) начнет перемещать второй подвижный наконечник (14) в сторону больших значений перемещений, а при уменьшении значения перемещения (в момент времени t2), снова сработает «собачка» храповика, зафиксировав максимальное значение перемещения за все время измерения а первый подвижный наконечник (5) продолжит свое движение в сторону меньших значений перемещения. Данный процесс будет повторяться каждый раз, когда измеряемая величина превысит значение предыдущего максимума. При этом пружина (30), расположенная между вторым подвижным наконечником (14) и корпусом датчика перемещения (1), на всем интервале измерения исключает возможность перемещения второго подвижного наконечника (14) под действием инерционных сил, действующих на него во всем рабочем диапазоне возможных ускорений, так как сила упругости пружины (30) выбирается такой, чтобы во всем рабочем диапазоне возможных ускорений она превышала бы силу инерции второго наконечника (14).

Таким образом, при включенном питании вторичной аппаратуры датчик перемещения позволяет получать следующую информацию:

- с выхода первого преобразователя (8) натяжения струны в электрический сигнал - информацию (частоту или период колебания участка (7) струны постоянной длины ), которая используется для контроля постоянства силы натяжения струны (2);

- с выхода второго преобразователя (10) измеряемой величины в электрический сигнал - информацию (частоту или период колебания первого рабочего участка струны (9)), которая используется для контроля текущего значения измеряемой величины

- с выхода третьего преобразователя (12) измеряемой величины в электрический сигнал - информацию (частоту или период колебания второго рабочего участка струны участка (11)), которая используется для контроля максимального значения измеряемого параметра за весь период эксплуатации датчика.

При отключенном питании вторичной аппаратуры (интервал времени от t1 до t3, например, в случае аварии, см. фиг. 6) информация с выходов преобразователей (8, 10, 12) измеряемой величины в электрический сигнал не поступает.

При восстановлении питания вторичной аппаратуры (момент времени t3 фиг. 4-6) с выходов датчика перемещения, появляется возможность получить информацию (частоту или период колебания участка струны постоянной длины), которая используется для контроля постоянства силы натяжения струны, и информацию (частоту или период колебания рабочих участков), которая используется только для контроля текущего значения измеряемого параметра, а также получить информацию о максимальном значении измеряемого параметра на интервале времени от t1 до t3, например, в случае аварии. При включении питании вторичной аппаратуры (в момент времени t3) датчик перемещения позволяет получать следующую информацию:

- с выхода первого преобразователя (8) натяжения струны в электрический сигнал - информацию (частоту или период колебания участка (7) струны постоянной длины ), которая используется для контроля постоянства силы натяжения струны (2);

- с выхода второго преобразователя (10) измеряемой величины в электрический сигнал - информацию (частоту или период колебания первого рабочего участка струны (9)), которая используется для контроля текущего значения измеряемой величины

- с выхода третьего преобразователя (12) измеряемой величины в электрический сигнал - информацию (частоту или период колебания второго рабочего участка струны участка (11)), которая используется для контроля максимального значения измеряемого параметра за весь период эксплуатации датчика (на интервале времени от t0 до t).

Основное преимущество предлагаемого датчика перемещения состоит в том, что благодаря устранению инерционности второго наконечника снижается его погрешность.

Сопоставительный анализ изобретения позволяет сделать вывод, что новым является, то что для обеспечения регистрации не только максимальных статических или квазистатических значений перемещений, но и динамических перемещений, сопровождающихся вибрациями и ускорениями, за весь предыдущий период измерения, датчик перемещения снабжен пружиной, расположенной между вторым подвижным наконечником и корпусом датчика перемещения, причем сила упругости пружины выбирается такой, чтобы во всем рабочем диапазоне возможных ускорений она превышала бы силу инерции второго подвижного наконечника.

На дату подачи заявки совокупность признаков заявленного датчика перемещения не известно; что определяет по мнению заявителя, соответствие критерию - «новизна». Сравнение предлагаемого решения с другими техническими решениями в данной области техники позволяет сделать вывод о соответствии критерию изобретения - «изобретательский уровень».

Изобретение позволяет контролировать значения не только максимальных статических или квазистатических перемещений, но и значения максимальных динамических перемещений, сопровождающихся вибрациями и ускорениями, за весь предыдущий период измерения, повышая при этом точность измерения за счет устранения влияния инерционных сил.

Датчик перемещения, содержащий корпус, измерительный элемент в виде струны с постоянным натяжением, подвижный элемент, воспринимающий перемещение и с помощью тяг, связанный с первым наконечником, выполненным в виде полого цилиндра с отверстиями в торцах цилиндра, в которых установлена струна с возможностью перемещения по скользящим посадкам, выделяющим внутри цилиндра участок струны постоянной длины, на образующей цилиндра первого наконечника в средней его части расположен первый преобразователь натяжения струны в электрический сигнал, под первым рабочим участком струны, расположенным за пределом цилиндра первого наконечника, размещен второй преобразователь измеряемой величины в электрический сигнал, закрепленный на корпусе датчика перемещения, под вторым рабочим участком струны, расположенным за пределом цилиндра первого наконечника, размещен третий преобразователь измеряемой величины в электрический сигнал, второй подвижный наконечник выполнен в виде полого цилиндра с закрепленным на нем храповиком реечного типа, собачка и прижимная пружина которого закреплены на корпусе датчика перемещения, а третий преобразователь измеряемой величины в электрический сигнал закреплен в полости цилиндра второго подвижного наконечника, который имеет соосные с первым подвижным наконечником отверстия, совпадающие с осью струны, в отверстии со стороны первого подвижного наконечника имеется скользящая посадка, выделяющая второй рабочий участок струны, для проводки кабелей от преобразователей измеряемой величины в электрический сигнал используются соосные отверстия в корпусе, а также в первом и втором подвижных элементах, герметизация корпуса датчика перемещения осуществлена за счет сильфона, отличающийся тем, что между корпусом датчика перемещения и вторым наконечником в поджатом состоянии расположена пружина, с наружным центрированием, обеспечивающим ее пространственное положение.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к исследованию и созданию чувствительных элементов спектральных датчиков и преобразователей физических величин. На упругом элементе в виде балки, выполненном из материала с положительным значением температурного коэффициента расширения, закрепляют дополнительный конструктивный элемент - термочувствительный элемент, выполненный из материала с отрицательным значением температурного коэффициента расширения.

Изобретение относится к измерительной технике. Согласно способу измерения спектра распределенного термомеханического воздействия используют оптоволоконный пьезоэлектролюминесцентный (PEL) датчик, осуществляют регулирование величины параметра J(αyпр) интенсивности I интегрального светового потока вида I(t,aynp) на выходе из оптоволокна через задаваемые значения параметра αупр управляющего электрического напряжения Uyпр(t) на выходах двухпроводной электрической линии, подключенной к внешнему источнику электроэнергии, нахождение спектра ƒζ распределенного термомеханического воздействия ζ(z) по продольной координате z оптоволоконного PEL-датчика из решения интегрального уравнения Фредгольма 1-го рода с использованием измеренной функции J(αyпр) - зависимости параметра интенсивности J светового потока на выходе из оптоволокна от управляющего параметра αупр.

Группа изобретений относится к исполнительному органу для приведения в действие приспособления управления полетом летательного аппарата и летательному аппарату, который его содержит. Исполнительный орган содержит два бесконтактно работающих датчика, один из которых расположен в пути нагрузки исполнительного органа, а другой - вне пути нагрузки.

Изобретение относится к измерительной технике, а именно к исследованию и созданию чувствительных элементов спектральных датчиков и преобразователей физических величин. На упругом элементе в виде балки, выполненном из материала с положительным значением температурного коэффициента расширения, закрепляют дополнительный конструктивный элемент – термочувствительный элемент, выполненный из материала с отрицательным значением температурного коэффициента расширения.

Изобретение относится к устройствам для измерения тяги и реактивного момента воздушного винта и может быть использовано при разработке стендов для отработки движителей для воздушной и водной среды. Стенд для измерения тяги и реактивного момента воздушного винта и динамических характеристик воздушного винта с двигателем содержит основание и установленный с возможностью перемещения относительно основания подвижный элемент с моторной базой, на которую устанавливают двигатель с воздушным винтом, и рычагом, с которым сопряжен датчик усилия для определения реактивного момента, а также соединенный с подвижным элементом датчик усилия для измерения тяги.

Группа изобретений относится к линиям электроснабжения, контактирующим с токоприемниками транспортных средств. Способ автоматического контроля контактного провода электротранспорта заключается в том, что формируют и отправляют отправку опросного сигнала, по полученным данным с датчиков силы и температуры устройства для считывания информации о температуре и силе натяжения контактного провода обрабатывают полученную информацию и передают ее оператору.

Изобретение относится к музыкальной технике. МИДИ-контроллер ударного музыкального инструмента, содержащий корпус, на котором сформирована по крайней мере одна ударная зона, состоящая из подушки из упруго деформируемого полимерного материала, с которой связана расположенная под подушкой тонколистовая мембрана из полимерного материала, на стороне которой, обращенной в направлении от подушки, нанесен электропроводящий слой, являющийся подвижным электродом.

Изобретение относится к измерительной технике и может быть использовано для определения изгибных напряжений в стенке подземных магистральных нефтегазопроводов. Способ включает измерение глубины, широты и долготы заложения оси трубопровода с помощью трассопоискового оборудования в реперных точках измерений, и по полученным данным производится расчет локальных радиусов изгиба и изгибных напряжений на локальных участках подземного трубопровода.

Изобретение относится к области автоматизированных систем мониторинга технического состояния зданий и сооружений и может быть использовано при проектировании и эксплуатации зданий и сооружений. Система содержит блок датчиков параметров, блок, осуществляющий регистрацию измерений, поступающих с одного или нескольких блоков датчиков, блок формирования из массива зарегистрированных параметров подмножества параметров, подлежащих контролю, блок интеллектуальной обработки, осуществляющий анализ контролируемых параметров нейронной сетью для формирования оценки состояния отдельных контролируемых конструкций и/или строительного объекта в целом и выявления зон напряженно-деформированного состояния, и последующий контроль выявленных зон напряженно-деформированного состояния, блок отображения мониторинговой информации, осуществляющий отображение в наглядной форме результатов оценки отдельных контролируемых конструкций и/или строительного объекта в целом.

Заявленная группа изобретений относится к способам и устройствам, осуществляющим радиолокационное считывание усилия. Эти способы и устройства могут предоставлять возможность измерения значительного охвата усилий.

Использование: для возбуждения непрерывных колебаний струнного преобразователя с одной электромагнитной катушкой возбуждения в режиме свободных колебаний для отслеживания, в составе системы мониторинга, технического состояния конструкции здания или сооружения в процессе эксплуатации, позволяющее своевременно выявить превышение допустимых деформаций конструкции и предупреждать ее разрушение.
Наверх