Способ получения привитого сополимера метилметакрилата на коллаген



Способ получения привитого сополимера метилметакрилата на коллаген
Способ получения привитого сополимера метилметакрилата на коллаген
A61L2/00 - Способы и устройства для дезинфекции или стерилизации материалов и предметов, кроме пищевых продуктов и контактных линз; принадлежности для них (для контактных линз A61L 12/00; распылители для дезинфицирующих составов A61M; стерилизация тары или упаковок и их содержимого при упаковке B65B 55/00; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод C02F; дезинфицирующая бумага D21H 21/36; устройства для дезинфекции в промывных уборных E03D; изделия, имеющие средства для дезинфекции, см. подклассы, соответствующие этим изделиям, например H04R 1/12)

Владельцы патента RU 2777896:

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (RU)

Настоящее изобретение относится к области получения материалов с новыми свойствами и их применения для создания новых субстанций на основе природного коллагена для использования в раневых покрытиях и скаффолдах для генеративной медицины. Способ получения привитого сополимера метилметакрилата на коллаген включает приготовление эмульсии сначала в токе аргона в течение 12-18 минут, а затем в токе аргона в течение 4,5-5,5 часов, при температуре 20-22°С, при облучении с помощью светодиодной лампы видимого излучения. Отделение катализатора после окончания реакции путем центрифугирования полученной эмульсии, отделение летучих компонентов высушиванием в вакууме. Эмульсия представляет собой дистиллированную воду 63,0-64,0; коллаген тресковый - 2,5-3,1; метилметакрилат - 32,5-33,0; и катализатор - порошок RbTe1.5W0.5 O6 - 0,9-1,0 к общей массе реагентов. Технический результат - упрощение производства получения грибостойкого материала за счет исключения стадии введения фунгицидного реагента, улучшения характеристик материала путем уменьшения частиц фунгицидного материала. 5 з.п. ф-лы, 3 пр., 3 ил.

 

Настоящее изобретение относится к области получения материалов с новыми свойствами и их применения для создания новых субстанций на основе природного коллагена для использования в раневых покрытиях и скаффолдах для генеративной медицины, в частности к способу получения привитого сополимера метилметакрилата на коллаген с фунгицидными свойствами. Полученные материалы с антимикробными свойствами позволяют предотвратить деградацию его в ходе транспортировки, хранения и длительной эксплуатации, вызванную контактом с окружающей средой.

Разработка материалов с фунгицидными свойствами для защиты от плесневых грибов имеет непреходящее значение. Изделия из полимерных материалов, особенно с включением природных высокомолекулярных соединений, подвергаются серьезному повреждению или даже практически полному разрушению плесневыми грибами, которые способны использовать их в качестве источников питания.

Микроорганизмы активно взаимодействуют с пластическими материалами, при этом проявления этого могут различаться, а именно: пигментация, изменение поверхности, изменение физико-химических свойств и др.

Для предотвращения поражения материала чаще всего вводятся фунгицидные добавки. Основной задачей таких добавок является подавление роста плесневых грибов и предотвращение разрушения пластиков. Фунгицидные добавки придают пластикам способность поддерживать стерильность поверхности в течение длительного времени и предотвращают процесс биоповреждений.

Одними из первых добавками в полимеры были соединения, с включением металлов и металлоидов: мышьяка, серы, ртути или меди, например, Бордоская жидкость. Затем, были начаты исследования, приведшие к получению органических фунгицидов. Обычно это органические низкомолекулярные, легкомигрирующие соединения, иногда содержащие ион металла. Среди основных органических соединений можно назвать: 10, 10-оксибисфеноксиарсин (ОВРА); трихлоргидроксидифенилэфир (Triclosan); n-октил-изотиазолинон (OIT); 4,5-дихлор-2-n-октил-4-изотриазолин-3-он (DCOIT); меркаптопиридина оксид (Pyrithione) [М.В. Гликштерн. Антимикробные добавки в полимеры. Полимерные материалы. 2003 г. № 7. С 13-14, № 8, С. 8-9]. Применение 8-гидроксихинолината цинка для получения сельскохозяйственного бактерицида раскрыто в патенте CN 109169670 A, кл. A01N43/42, A01P1/00, A01P3/00, опубл. 11.01.2019 г. Сельскохозяйственный бактерицид, полученный с использованием 8-гидроксихинолината цинка в качестве активного ингредиента, обладает широким бактерицидным спектром и может использоваться не только для борьбы с грибковыми заболеваниями.

Известны полимеры, обладающие антимикробным действием (полифосфонаты, поли-N-галогенпиридин, поли (стирол-дивинилбензол) сульфамид и др.), [М.В. Гликштерн. Антимикробные добавки в полимеры. Полимерные материалы. 2003 г. № 7. С 13-14, № 8, С 8-9, Штильман М.И., Tzatzarakis M. И др. Полимерные фунгициды. Высокомолек. Соед. Серия Б., 1999. Т. 41. № 8. С. 1363-1376). Кроме того изобретения [CN 112400879 A, кл. A01N37/36, A01N37/04, A01P3/00, опубл. 26.02.2021 г.; CN 112106775 A, кл. A01N37/36, A01P3/00, опубл. 22.12.2020 г.] раскрывают противогрибковую активность соединений карбоновых кислот.

В настоящее время получили значительное распространение неорганические добавки - соединения металлов, чаще всего оксиды серебра, цинка в микро- и даже наноконцентрациях [А.А. Мелешко, А.Г. Афиногенова и др. Антибактериальные неорганические агенты: эффективность использования многокомпонентных систем. Инфекция и иммунитет. 2020. Т. 10 № 4, с. 639-654], металлсодержащие соединения олова серебра [М.В. Гликшнерн. Антимикробные добавки в полимеры Полимерные материалы. 2003 г. № 7. С 13-14, № 8, С 8-9].

В работе [А.А. Мелешко, А.Г. Афиногенова и др. Антибактериальные неорганические агенты: эффективность использования многокомпонентных систем. Инфекция и иммунитет. 2020. Т. 10, № 4, с. 639-654] отмечается, что наночастицы металлов и оксидов металлов являются перспективными антибактериальными агентами. Они обладают широкой антимикробной активностью в отношении бактерий, вирусов, грибков и простейших, а также позволяют избегать развития устойчивости микроорганизмов. Кроме того, известны примеры формирования двойных и тройных нанокомпозитов на основе оксидов: CuO, ZnO, Fe3O4, Ag2O, MnO2 и ряда других, в том числе допированных различными металлами/неметаллами, например, Ag, Ce, Cr, Mn, Nd, Co, Sn, Fe, N, F и др. Результаты исследований многокомпонентных систем демонстрируют наличие у них более выраженной антибактериальной активности и синергетического эффекта по сравнению с активностью индивидуальных оксидов. Например, тройные нанокомпозиты ZnO-MnO2-Cu2O или ZnO-Ag2O-Ag2S показали увеличение зоны ингибирования роста тест-штаммов грамотрицательных и грамположительных микроорганизмов на 100% по сравнению с ZnO. Такой же удвоенный антибактериальный эффект наблюдали для наночастиц ZnO, допированного церием, или для CuO, допированного цинком. Чаще всего рассмотренные нанокомпозиты и их сочетания обладают выраженным пролонгированным антимикробным действием, обладают низкой токсичностью в отношении эукариотических клеток, в композициях с полимерами (альгинатом натрия, коллагеном, поливинилпирролидоном и др.) демонстрируют противовоспалительные и ранозаживляющие свойства. Использование наноразмерных систем может решить одновременно несколько важных практических задач, таких как сохранение высокой пролонгированной антимикробной активности при одновременном снижении количества используемых соединений, создание новых антимикробных препаратов с низкой токсичностью и уменьшенной экологической нагрузкой на окружающую среду, разработка новых биоцидных материалов, в том числе новых покрытий для эффективной антимикробной защиты изделий медицинского назначения.

Для обеспечения грибостойких свойств в полимерные эмали вводят специально подобранные концентрации биоцидов [Н.А. Аникина, В.Ф. Смирнов и др. Исследование устойчивости к действию микроскопических грибов лакокрасочных материалов, используемых в строительстве, приборо- и машиностроении. Вестник Нижегородского университета им. Н.И. Лобачевского, 2014. № 2 (1). С. 100-105].

Однако практически любые добавки предполагают в технологии изготовления материала дополнительную стадию, обеспечивающую равномерное распределение в нем специальной противогрибковой добавки.

Существует прием нанесения противогрибкового препарата на поверхность полимерного изделия. Например, многослойный полимерный материал обрабатывают фторуглеродным поверхностным составом для обеспечения водоотталкивающих свойств, устойчивости к ультрафиолетовому излучению и плесени (US 2020223179 A1, опубл. 16.07.2020). Недостатками данного способа являются наличие дополнительной стадии в технологии получения материала, неоднородность покрытия.

При получении биоцидной пищевой пленки с нанослоями серебра использовали нанесение добавки на поверхность методом магнетронного напыления [М.И. Невская, Е.В. Найденко и др. Разработка биоцидных пищевых пленок с нанослоями серебра и их использование для хранения продуктов животного происхождения. Материалы III Всероссийской образовательно-научной конференции студентов и молодых ученых с международным участием в рамках XIII областного фестиваля "Молодые ученые - развитию Ивановской области" 2017. С. 367-368). Недостатками данного способа являются наличие дополнительной стадии в технологии получения материала, использование дорогостоящего оборудования для напыления, неоднородность покрытия.

Предложен способ предотвращения плесени путем не только добавления в состав материала, но и периодической обработки поверхности изделия этим составом (CN 111218532 A, кл. С14С11/00, С14С15/00, опубл. 06.02.2020 г.), или только наносить на внешнюю поверхность (CN 103589258 A, кл. С09D133/04, C09D7/12, опубл. 23.12.2015 г.). Недостатками указанных методов являются наличие дополнительной стадии в технологии получения материала, неоднородность покрытия.

Более известны технологии введения антимикробной добавки в процессе изготовления материала (CN 109486211 A, кл. C08L89/00, C08K13/04, C08K7/00, C08K3/34, C08K5/1515, C08K5/1539, опубл. 19.03.2019; CN 112501910 A, опубл. 16.07.2021; CN 112341646 A, опубл. 16.11.2020). Например, модифицирующий бактерицидный состав (водный раствор триклозана) в биоцидные полиэтилентерефталатные пленки вводят в состав на стадии формования пленки [Н. Винидиктова, О. Ермолович. Инсектицидные полиэтиленовые пленки и биоцидные полиэфирные волокна. Наука и инновации. 2006. №7(41). С. 71-72]. Недостатком данного способа является наличие дополнительной стадии в технологии получения материала, изменение некоторых свойств конечного изделия.

Модифицированные наноразмерными медьсодержащими порошками пропиленовые нити получали, вводя бактериальную добавку на стадии формования [А.Л. Чуловская, С.Ю. Вавилова и др. Композиционные материалы на основе полипропилена для получения волокон, обладающих фунгицидными свойствами. Успехи в химии и химической технологии. Т. 26. № 4. С. 127-129]. Недостатками данного способа являются специальная стадия получения порошка меди с конкретными характеристиками и наличие дополнительной стадии в технологии получения материала.

Известен способ получения нетканых материалов с антибактериальными свойствами, (RU 2617744 C1, A61L2/00, D06M10/02, D06M10/06, D06M11/83, D06B1/02, B82B3/00, опубл. 26.04.2017 г.), в котором после предварительной обработки ультразвуком с целью активации поверхности материала проводится его погружение в раствор или набрызгивания раствора, содержащего заранее приготовленные наноразмерные коллоидные частицы металлов или оксидов с концентрацией 0.1-5% от веса материала с последующим высушиванием материала при температуре от 60 до 100°С до постоянного веса. При этом раствор, который набрызгивают или в который погружают материал, представляет из себя водную или водно-спиртовую дисперсию, содержащую коллоидные частицы - наночастицы меди, железа, тантала, серебра, оксида цинка, титана и ванадия с массовой долей от 0.1 до 5%. При этом синтез наночастицы в растворе происходит в результате расплавления, испарения поверхности металлических электродов под действием электрического дугового разряда, который возникает при создании на электродах переменной импульсной разности потенциалов от 5 кВт до 9 кВт и последующей конденсации в жидкой конденсированной фазе. Отличительной чертой получаемых в водной или водно-спиртовой фазе наночастиц является то, что размеры наночастиц находятся в диапазоне от 1 до 20 нм. Недостатками этого способа являются многостадийность получения материала, использование специального оборудования для осуществления электрического дугового разряда.

В задачу изобретения положено создание нового способа получения привитого сополимера метилметакрилата на коллаген с фунгицидными свойствами, содержащего частицы оксида RbTe1.5W0.5O6, имеющего размеры ≤ 2 нм, не требующего специального оборудования и дополнительной стадии в технологии изготовления материала.

Техническим результатом от использования предлагаемого изобретения является упрощение производства получения грибостойкого материала за счет исключения стадии введения фунгицидного реагента, улучшения характеристик материала путем уменьшения частиц фунгицидного материала в сравнении с прототипом.

Это достигается тем, что способ получения привитого сополимера метилметакрилата на коллаген с фунгицидными свойствами включает приготовление эмульсии путем перемешивания воды, коллагена трескового, метилметакрилата и порошка RbTe1.5W0.5O6, сначала в токе аргона в течение 12-18 минут, а затем в токе аргона в течение 4,5-5,5 часов, при температуре 20-22°С, при облучении с помощью светодиодной лампы видимого излучения, при следующем соотношении компонентов, %: вода дистиллированная - 63,0-64,0, коллаген тресковый - 2,5-3,1; метилметакрилат - 32,5-33,0, порошок RbTe1.5W0.5O6 - 0,9-1,0 к общей массе реагентов, отделение катализатора после окончания реакции путем центрифугирования полученной эмульсии в течение 25-35 минут, отделение летучих компонентов высушиванием в вакууме.

На фиг. 1 представлена микроструктура образцов графт-сополимера ПММА-коллаген по примеру 1.

На фиг. 2 представлена микроструктура образцов графт-сополимера ПММА-коллаген по примеру 2.

На фиг. 3 представлена микроструктура образцов графт-сополимера ПММА-коллаген по примеру 3.

Использование RbTe1,5W0,5O6 в качестве фунгицидной добавки не является очевидным приемом, т.к. ранее он использовался в качестве фотокатализатора [L. Semenycheva, V. Chasova et al. J. Inorg. Organomet. Polym. 31(6), 3572-3583 (2021)] и о его фунгицидной активности и, более того, о его возможном применении в качестве средства защиты полимеров от грибковых повреждений ничего не было известно.

Предлагаемый способ привитого сополимера метилметакрилата на коллаген с фунгицидными свойсствами осуществляют следующим образом.

Предварительно получали из реагентов: нитрат рубидия RbNO3, оксид теллура TeO2 и вольфрама WO3 марки х.ч., смешивая их в стехиометрическом соотношении Rb:Te:W=1:1.5:0.5 и диспергируя в агатовой ступке. Полученную смесь нагревали в платиновом тигле до 700°С, выдерживали при этой температуре 1 сутки. Полученный расплав резко охлаждали, после чего образец перетирали в планетарной мельнице в течение 18 часов со скоростью 300 оборотов/мин (Fukina D. G., Suleimanov E. V. et al., J. Solid State Chem. - 2020. - V. 286. - P. 121276).

Тресковый коллаген, используемый для получения привитого сополимера метилметакрилат-коллаген, получали следующим образом: очищали рыбные шкуры, измельчали, троекратно промывали водопроводной водой, и выдерживали при комнатной температуре в 3 %-ном растворе уксусной кислоты при жидкостном коэффициенте 5 при периодическом помешивании в течение 15-18 часов. Затем фильтровали через капроновую ткань, затем через бумажный фильтр. Порошок коллагена получали после удаления жидких реагентов в вакууме при 40°С (патент RU 2567171 С 1, опубл. 10.11.2015).

Эмульсию для получения привитого сополимера метилметакрилата на коллаген готовили путем смешивания и перемешивания с помощью магнитной мешалки порошка RbTe1.5W0.5O6 и жидких компонентов: воды, коллагена, мономера, и дегазации в токе аргона аргоном в течение 12-18 минут. Затем реакцию проводили в токе аргона, в течение 4,5-5,5 часов, при температуре 20-22°С при облучении светодиодной лампы видимого излучения (LED,30 Вт) при перемешивании верхнеприводной мешалкой, при следующем соотношении компонентов, %:

вода дистиллированная (ГОСТ 6709-72) - 63,0-64,0,

коллаген тресковый - 2,5-3,1,

метилметакрилат (ГОСТ 20370-74) - 32,5-33,0,

порошок RbTe1.5W0.5 O6- 0,9-1,0 к общей массе реагентов.

После окончания реакции для отделения катализатора эмульсию центрифугировали в течение 25-35 минут, летучие компоненты отделяли высушиванием в вакууме.

При быстром высушивании в вакууме получали порошок привитого сополимера метилметакрилата на коллаген, при медленном - пленку привитого сополимера метилметакрилата на коллаген. Полученный привитой сополимер метилметакрилата на коллаген анализировали.

Полученный привитой сополимер ММА на коллаген содержит частицы оксида RbTe1.5W0.5O6 в микро-количествах, имеющего размеры ≤ 2 нм и выполняет функции фунгицидной добавки.

Пленку полученного сополимера испытывали на грибостойкость по ГОСТ 9.049-91 «Материалы полимерные и их компоненты. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов», метод 1. В качестве тест-культур использовались микроскопические грибы активные деструкторы полимерных материалов: Aspergillus niger, Aspergillus terreus, Aspergillus oryzae, Chaetomium globosum, Paecilomyces variotii, Penicillium funiculosum, Penicillium chrysogenum, Penicillium cyclopium, Trichoderma viride. Образцы помещались в чашки Петри. Затем поверхность образцов инокулировались суспензией спор микромицетов и чашки Петри с образцами помещались в термостат. Продолжительность испытаний - 28 суток при температуре 29±2°С и влажности более 90%.

Размеры частиц оксида RbTe1.5W0.5O6 в полимере определяли на сканирующем электронном микроскопе (СЭМ) JSM-IT300 (JEOLLtd, Japan) с диаметром электронного зонда - до 5 нм (рабочее напряжение 20 кВ) и с использованием низкоэнергетичных вторичных электронов.

Таким образом, за счет использования в предлагаемом способе в качестве фунгицидного агента фотокатализатора синтеза привитого сополимера метилметакрилата на коллаген оксида RbTe1.5W0.5O6, микроколичества которого адсорбируются на поверхности сополимера, остаются на нем после удаления катализатора с размерами частиц ≤ 2 нм и выполняют функции фунгцидной добавки, обеспечивается исключение трудоемкой стадии подготовки и введения в материал фунгицидного препарата.

Ниже приведены примеры конкретного осуществления предлагаемого способа.

Пример 1

Эмульсию для получения привитого сополимера метилметакрилата на коллаген готовили путем смешивания и перемешивания с помощью магнитной мешалки порошка RbTe1.5W0.5O6 и жидких компонентов: воды, коллагена, мономера, и дегазации в токе аргона аргоном в течение 12-18 минут. Затем осуществляли синтез из компонентов смеси при следующем соотношении, %:

вода - 63,0;

коллаген - 3,1;

метилметакрилат - 33,0;

порошок RbTe1.5W0.5O6 - 0,9.

Синтез проводили при температуре 20-22°С в течение 4,5 часов при облучении с помощью светодиодной лампы видимого излучения (LED, 30 Вт).

После окончания реакции осуществляли отделение катализатора путем центрифугирования полученной эмульсии в течение 25 мин и высушиванием в вакууме в течение 4 ч.

Получали порошок привитого сополимера метилметакрилата на коллаген.

Результаты анализа: полимер грибостоек (по ГОСТ 9.049-91, метод 1 - 1 балл).

Результаты анализа: размеры частиц ≤ 2 нм оксида RbTe1.5W0.5O6 (фиг.1).

Пример 2

Эмульсию для получения привитого сополимера метилметакрилата на коллаген готовили путем смешивания и перемешивания с помощью магнитной мешалки порошка RbTe1.5W0.5O6 и жидких компонентов: воды, коллагена, мономера, и дегазации в токе аргона аргоном в течение 12-18 минут. Затем осуществляли синтез из компонентов смеси при следующем соотношении, %:

вода - 64,0;

коллаген - 2,5;

метилметакрилат - 32,5;

порошок RbTe1.5W0.5O6 - 1,0.

Синтез проводили при температуре 20-22°С в течение 5 часов при облучении с помощью светодиодной лампы видимого излучения (LED,30 Вт).

После окончания реакции осуществляли отделение катализатора путем центрифугирования полученной эмульсии в течение 30 мин и высушиванием в вакууме в течение 8 ч.

Получали пленку привитого сополимера метилметакрилата на коллаген.

Результаты анализа: полимер грибостоек (по ГОСТ 9.049-91, метод 1 - 1 балл).

Результаты анализа: размеры частиц ≤ 2 нм оксида RbTe1.5W0.5O6 (фиг. 2).

Пример 3

Эмульсию для получения привитого сополимера метилметакрилата на коллаген готовили путем смешивания и перемешивания с помощью магнитной мешалки порошка RbTe1.5W0.5O6 и жидких компонентов: воды, коллагена, мономера, и дегазации в токе аргона аргоном в течение 12-18 минут. Затем осуществляли синтез из компонентов смеси при следующем соотношении, %:

вода - 63,6;

коллаген - 2,6;

метилметакрилат - 32,8;

порошок RbTe1.5W0.5O6 - 1,0.

Синтез проводили при температуре 20-22°С в течение 5,5 часов при облучении с помощью светодиодной лампы видимого излучения (LED, 30 Вт).

После окончания реакции осуществляли отделение катализатора путем центрифугирования полученной эмульсии в течение 35 мин и высушиванием в вакууме в течение 8 ч.

Получали пленку привитого сополимера метилметакрилата на коллаген

Результаты анализа: полимер грибостоек (по ГОСТ 9.049-91, метод 1 - 1 балл).

Результаты анализа: размеры частиц ≤ 2 нм оксида RbTe1.5W0.5O6 (фиг. 2).

Представленные примеры подтверждают достижение технического результата: упрощение производства получения грибостойкого материала за счет исключения стадии подготовки и введения фунгицидного реагента, улучшения характеристик материала путем уменьшения частиц фунгицидного материала до ≤ 2 нм.

1. Способ получения привитого сополимера метилметакрилата на коллаген включает приготовление эмульсии путем перемешивания воды, коллагена трескового, метилметакрилата и катализатора, в качестве которого используют порошок RbTe1.5W0.5O6, сначала в токе аргона в течение 12-18 минут, а затем в токе аргона в течение 4,5-5,5 часов, при температуре 20-22°С, при облучении с помощью светодиодной лампы видимого излучения, при следующем соотношении компонентов, %:

вода дистиллированная - 63,0–64,0,

коллаген тресковый – 2,5-3,1;

метилметакрилат – 32,5-33,0,

порошок RbTe1.5W0.5 O6 – 0,9-1,0 к общей массе реагентов,

отделение катализатора после окончания реакции путем центрифугирования полученной эмульсии, отделение летучих компонентов высушиванием в вакууме.

2. Способ по п. 1, отличающийся тем, что перемешивание компонентов осуществляют сначала с помощью магнитной мешалки, а затем с помощью верхнеприводной мешалки.

3. Способ по п. 1, отличающийся тем, что предварительно получали порошок RbTe1.5W0.5O6 путем смешивания нитрат рубидия RbNO3, оксид теллура TeO2 и вольфрама WO3 марки х.ч. в стехиометрическом соотношении Rb:Te:W=1:1.5:0.5 и диспергируя в агатовой ступке, затем нагреванием полученной смеси в платиновом тигле до 700°С, выдерживание при этой температуре в течение 1 суток, резким охлаждением полученного расплава, перетиранием полученного образца в планетарной мельнице в течение 18 часов со скоростью 300 оборотов/мин.

4. Способ по п. 1, отличающийся тем, что тресковый коллаген получали следующим образом: очищали рыбные шкуры, измельчали, троекратно промывали водопроводной водой и выдерживали при комнатной температуре в 3%-ном растворе уксусной кислоты при жидкостном коэффициенте 5 при периодическом помешивании в течение 15-18 часов, затем фильтровали через капроновую ткань, затем через бумажный фильтр, порошок коллагена получали после удаления жидких реагентов в вакууме при 40°С.

5. Способ по п. 1, отличающийся тем, что центрифугирование полученной эмульсии осуществляют в течение 25-35 минут.

6. Способ по п. 1, отличающийся тем, что при быстром высушивании получают порошок привитого сополимера метилметакрилата на коллаген, при медленном - пленку привитого сополимера метилметакрилата на коллаген.



 

Похожие патенты:
Изобретение относится к перерабатывающей промышленности. Способ получения высокомолекулярного коллагена включает контурирование шкур прудовых рыб, очищение средней части от прирезей мышечной ткани, жира и механических загрязнений, измельчение на полосы 2-4 см, промывание водой при температуре 8-14°С в течение 10-15 минут, замачивание в растворе хлорида натрия с концентрацией 3 мас.% в течение 10 минут, обезжиривание в растворе ферментного комплекса липоризина, содержащего 1 часть протеазы и 2 части липазы, с концентрацией 0,1% к массе сырья ферментного комплекса в течение 30 минут, промывание в дистиллированной воде до отсутствия остатков ферментного комплекса, замачивание в пероксидно-щелочном растворе, состоящем из смеси пероксида водорода с концентрацией 3 мас.% и гидроксида натрия с концентрацией 2 мас.%, взятых в соотношении 6:4 – 7:3, выдерживание в течение 2-3 часов при температуре 20-25°С, промывание в дистиллированной воде при температуре 14-18°С в течение 20 мин, заливание раствором уксусной кислоты с концентрацией 1,5% и выдерживание в течение 5 суток, нейтрализацию раствором гидроксида натрия до рН 5,5, гомогенизацию, упаковывание в полиэтиленовую тару и хранение при температуре 0…+4 до 4 месяцев.
Изобретение относится к перерабатывающей промышленности. Способ получения пористого влагоемкого материала на коллагеновой основе характеризуется тем, что очищенные от загрязнений и прирезей мышечной ткани шкуры пресноводных рыб, промытые в проточной воде в течение 5-10 мин и выдержанные в мыльном растворе в течение 20-30 мин с последующей промывкой водой до полного удаления остатков мыла, заливают смесью растворов пероксида водорода с концентрацией 3 мас.% и гидроксида натрия с концентрацией 2 мас.%, взятых в соотношении 6:4 при гидромодуле 1:5 и выдерживают в течение 1 часа, затем промывают шкуры дистиллированной водой и заливают раствором яблочного уксуса с концентрацией 1,5 мас.%, или раствором аскорбиновой кислоты с концентрацией 7 мас.%, или лимонной кислоты с концентрацией 1,5 мас.%, или янтарной кислоты с концентрацией 1,5 мас.%, или молочной кислоты с концентрацией 1,5 мас.% при гидромодуле 1:2 и выдерживают от 3 до 5 суток, затем полученную массу гомогенизируют при добавлении дистиллированной воды с гидромодулем 1:3 до однородной массы и подвергают замораживанию и сушке в вакуум-сублимационной сушилке при вакууме от 1,2·10-1 до 8·10-1 мбар, полученный пористый материал нарезают на пластины и герметично упаковывают.
Изобретение относится к перерабатывающей промышленности, а именно к способу получения коллагена. Описан способ получения высокомолекулярного коллагена, где перед первичной промывкой шкуры пресноводных рыб дополнительно обрезают и сортируют по толщине шкуры.

Применение 2,4,6-замещенных-1,3,5-триазинов и их производных в качестве конденсирующих, поперечно-сшивающих, дубильных, прививающих, отверждающих агентов для получения амидов, сложных эфиров, сложных тиоэфиров и стабилизированного коллагена и кожи, КМЦ (карбоксиметилцеллюлозы), синтетических и природных полимеров.
Группа изобретений относится к области тканевой инженерии, в частности к коллагеновым мембранам, используемым в качестве ксеноимплантатов и раскрывает коллагеновую мембрану из биоткани кальмара и способ ее получения. Коллагеновая мембрана из биоткани кальмара вида Dosidicus Gigas семейства Ommastrephinae обладает с прочностью на разрыв 150-250 МПа, относительном удлинении при разрыве не менее 20%, толщиной от 20 до 100 мкм, с отклонением по толщине от среднего значения не более 5%, с содержанием коллагена не менее 98% в пересчете на абсолютно сухое вещество.

Изобретение относится к белковым адгезивам и способам получения и применения таких адгезивов для получения различных изделий из древесины. Адгезивная композиция содержит (a) от примерно 1 мас.% до примерно 90 мас.% реакционноспособного форполимера и (b) измельченную растительную муку в количестве, достаточном для диспергирования реакционноспособного форполимера в водной среде, измельченная растительная мука получена из кукурузы, пшеницы, подсолнечника, хлопка, рапсовых семян, канолы, клещевины, сои, рыжика, льна, ятрофы, мальвы, арахиса, водорослей, выжимки сахарного тростника, сыворотки или их комбинации, или выделенную полипептидную композицию, полученную из растительной биомассы.

Изобретение относится к привитым полимерам на основе смеси полисахаридов и полипептидов. Привитой полимер на основе полисахаридов и полипептидов или их соответствующих производных получают путем свободнорадикальной полимеризации А) мономера, выбранного из числа следующих, или смеси следующих мономеров: (a) от 20 до 100 мас.

Изобретение относится к клеевой композиции, способу склеивания первого изделия со вторым, способу получения композитного материала и изделию, полученному с применением клеевой композиции. Клеевая композиция включает от 5% до 90% (масс./масс.) реакционно-способного преполимера, выбранного из группы, состоящей из преполимера на основе полиизоцианата, преполимера на основе эпоксидного соединения, латексного преполимера или их комбинации; и от 10% до 99% (масс./масс.) выделенной полипептидной композиции, способной к диспергированию реакционно-способного преполимера в воде.

Изобретение относится к полиуретановому пеноматериалу, способу получения полиуретанового пеноматериала, премиксу для получения полиуретанового материала и изделию, содержащему пеноматериал. Полиуретановый пеноматериал представляет собой продукт реакции смеси: (а) реагент на основе изоцианата; (b) необязательное реагирующее с изоцианатом соединение и белоксодержащую композицию, способную уменьшать плотность полиуретанового пеноматериала по меньшей мере на 5% относительно полиуретанового материала, полученного из той же самой смеси, но лишенного белоксодержащей композиции.

Изобретение относится к химической технологии и технологиям получения ветеринарных, медицинских и фармацевтических препаратов. Способ получения нового противовирусного вещества на основе 2,5-дигидроксибензойной кислоты и желатина включает в себя окисление 2,5-дигидроксибензойной кислоты ферментом лакказой до промежуточных феноксирадикалов и семихинонов, которые далее сополимеризуются с желатином, и отделение полученного сополимера от низкомолекулярных компонентов с помощью диализа; оптимальными концентрациями компонентов реакционной смеси являются для 2,5-дигидроксибензойной кислоты - 15-80 мМ, для желатина - 1-13 мг/мл реакционной смеси, для лакказы - 0,5-10 Ед активности/мл реакционной смеси.

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе соляной кислоты концентрацией 350 г/л с добавлением хлорида цезия с концентрацией на пределе растворимости 1500 г/л под действием переменного тока 2 А и частотой 1–50 Гц с последующей химической реакцией.
Наверх