Винт потоковый

Изобретение относится к судостроению и авиастроению, а именно к водным и воздушным судовым потоковым винтам. Винт потоковый представляет собой вал с закрепленными на нем не менее чем двумя лопастями, закрученными вокруг вала. Каждая лопасть представляет собой ¼ части тора без внутренней части и имеет форму спирали с изменяемым шагом. Достигается возможность создания плавного изменения траектории потока от 0 до 90º. 7 ил., 2 табл.

 

Изобретение относится к судостроению и авиастроению, а именно к водным и воздушным судовым потоковым винтам, также может найти применение в качестве генератора водных и воздушных потоков в электрическую энергию.

Известен движитель (винт) содержащий ступицу, лопасти с входными и выходными участками, амплитуду и шаг отклонения профиля выходной кромки лопасти. Выходные участки лопастей по всей высоте, начиная от 1/2 длины профиля у ступицы и 1/3 длины профиля на периферии, выполнены с периодическими отклонениями угла профиля с образованием волнистой поверхности выходной части лопасти и волнистой выходной кромки относительно расчетного значения угла лопасти в каждом цилиндрическом сечении. Амплитуда и шаг отклонений профиля выходной кромки лопасти от расчетного значения по высоте максимальна у ступицы и минимальна или равна нулю на максимальном диаметре лопасти, и на каждой последующей лопасти начало волнистости у ступицы смещено относительно начала волнистости предыдущей лопасти на величину T/z, где Т - шаг первой волны, a z - число лопастей. Достигается минимальное сбегание или отклонение потока по радиусу, улучшение проточных характеристик лопасти (RU 2524511, МПК B63H 1/26; B64C 11/00).

Известен гребной винт регулируемого шага, установленный на гребном валу и включающий в себя ступицу с закрепленными на ней лопастями с обеспечением их поворота относительно ступицы. Лопасти выполнены составными и состоят, по меньшей мере, из двух частей. Каждая часть лопасти имеет самостоятельную возможность поворота (RU 2658199, МПК B63H 3/04; B64C 11/00).

Известен аэродинамический винт содержит комлевую часть, которая выполнена единой для всех лопастей. Внутренняя и внешняя поверхности лопастей параллельны друг другу. Передняя кромка лопастей выполнена с фасками от поверхностей и радиусом средней части, а задняя кромка выполнена со скосом с внешней поверхности при угле скоса, равном 10…15°, и радиусом, выходящим на внутреннюю поверхность. Лопасти расположены с образованием конуса α=120…170°. Периметр перьев лопастей определен по линии кривой равной ширины. Перья лопастей могут быть разделены по линии выполнения отрезка кривой равной ширины, или по линии, параллельной линии выполнения отрезка кривой равной ширины, расположенной по всей ширине лопасти. Каждое перо расположено в единой плоскости с разворотом передней кромки от образующего конуса на угол β=0…300. По периметру винта могут быть расположены лопасти с чередованием полных, разделенных и срезанных перьев (RU 2441805; МПК B64C 11/00).

Все существующие на сегодняшний момент винты основываются на использовании силы сопротивления потока лопастям винта. Винты отталкиваются лопастями от потока, при вращении винта, или еще добавляют силу, возникающую в лопасти, описанную уравнения Бернулли. При этом изменение траектории потока организуется резко и на небольшом участке, что выражается в силе сопротивления лопасти потоку.

Задача, стоящая перед авторами состоит в создании оптимального потока воды или воздуха, и использование его, при изменении траектории потока, возникающей силы для организации поступательной силы на ось винта, при его вращении, для максимально эффективного использования сил, возникающих при работе винта (повышение КПД, мощности винта).

Задача решается за счет устройства заявляемого винта, представляющего собой вал с закрепленными вокруг него лопастями, каждая из которых представляет собой ¼ тора и имеет форму спирали с изменяемым шагом.

Сущностью заявляемого изобретения является возможность создания плавного изменения траектории потока от 0º до 90º с использованием, возникающей при этом, центробежной силы потока, позволяющей максимально эффективно использовать силу, благодаря работе заявляемого винта, лопасти которого представляют собой ¼ тора, закрученные вокруг вала, при этом лопасти выполнены в форме спирали с изменяемым шагом.

На фиг. 1 показан винт потоковый с четырьмя лопастями, вид сверху.

На фиг. 2 показан винт потоковый с четырьмя лопастями, вид сбоку.

На фиг. 3 изображено направление, движения потока (показано стрелочками) газа или жидкости, при принудительном вращения винта.

На фиг. 3а изображено направление, движения потока (показано стрелочками) газа или жидкости, при работе винта, используемого в качестве генератора электроэнергии, под динамическим давлением потока газа или жидкости.

На фиг. 4 показана обычная, с постоянным шагом, спираль.

На фиг. 5 показана физическая реализация спирали с изменяемым шагом (изменяемым наклоном потока по отношению к оси спирали)

На фиг. 6 показаны действия центробежных сил потока, при движении по окружности.

Устройство состоит

Потоковый винт представляет собой вал 1 с закрепленными на нем, не менее чем двумя, лопастями 2. Каждая лопасть винта представляет собой ¼ части тора, закрученную вокруг вала 1, при этом лопасти выполнены в форме спирали с изменяемым шагом (изменяемым углом направления потока), что позволяет изменить направление проходящего потока на 90º. При этом, изменения движения потока идет не только в одной плоскости, как на обычных лопастях (вдоль оси и по ширине), но и в другой плоскости (по глубине). Полное изменение угла направления потока и во всех трех плоскостях, дает нам прибавку мощности лопастей.

Математическая модель спирали и обоснование движения потоков при работе заявляемого винта фиг. 4.

Спираль можно описать уравнением в параметрической форме, заданное по трем координатам X, Y, Z:

X = R*cos(w*t);

Y = R*sin(w*t);

Z = A*t;

R – радиус спирали;

w – частота;

t – время;

A – шаг спирали;

Ось Z является осью спирали. Первая производная по Z , является скоростью ∆ Z/dt = A, вторая производная по Z , является ускорением ∆∆Z/dt = 0. Для того, чтобы ∆∆Z/dt не было равно нулю, нужно, чтобы скорость точки двигающейся по спирали была функцией A = F(t). Если эта функция положительна, интервал [0;∞],то шаг спирали увеличивается, соответственно и угол наклона спирали изменяется. Если A = 0, то у нас есть круг и угол наклона витка будет перпендикулярен оси Z, то есть 90º. А если A = ∞, то у нас прямая и наклон витков спирали 0º к оси Z. Или углы наоборот, если рассматривать по отношению основанию сопла.

Физическая реализация математической модели.

И так согласно математической модели спирали, чтобы спираль имела ускорение надо менять угол наклона спирали от 90º до 0º по отношению к оси спирали (фиг. 5).

Было предложено, что только ¼ часть окружности меняет угол касательной к ней, в таком интервале. Соответственно была взята ¼ часть траектории по окружности и свернута в цилиндр, при этом траектория витков совпадает с разных сторон (лево и право).

Для расчетов достаточно использовать общеизвестный расчет центробежной силы возникающей при движении массы по ¼ окружности (фиг. 6). Таким образом, лопасти направляют поток по спирали с изменяемым шагом (изменяемым углом наклона траектории потока, по отношении к оси винта).

Способ работы заявляемого винта.

Работу заявляемого устройства можно описать на примере принудительного вращения винта для создания потока, или возникновения динамического давления окружающего пространства газового или водного содержания для создания вращения винта.

Пример работы винта, установленного на водном (подводном) или воздушном судне, при его принудительном вращении (фиг. 3).

При осуществлении данного способа работы, вал 1 винта приводится в движение при помощи работы двигателя водного или воздушного судна, на котором установлен винт. В результате вращения винта, лопасти 2 создают потоки газа или жидкости, образовавшийся поток будет двигаться по участку в четверть окружности, при этом создавая центробежную силу. Таким образом, благодаря форме лопастей 2 винта, создается плавное изменение траектории потока от 0º до 90º с использованием, возникающей при этом, центробежной силы потока.

Пример работы винта, используемого в качестве генератора электроэнергии, под динамическим давлением потока газа или жидкости (фиг.3а).

При осуществлении данного способа работы, вал 1 винта, установленный на генераторе электроэнергии, приводится в движение при помощи внешнего воздействия на лопасти 2 потока воды (например, проточной реки) или газа, которые создают в винте силы, заставляющие его вращаться. Таким образом, благодаря форме лопастей 2 винта, создается плавное изменение траектории потока от 0º до 90º с использованием, возникающей при этом, центробежной силы потока. В результате такого вращения винта, генерируется электроэнергия.

Сила сопротивления лопасти потоку является частным случаем центробежной силы потока и ограничена участком соприкосновения лопасти с потоком, и углом отклонения траектории движения потока. Мы же используем весь угол отклонения траектории движения потока, равный 90º, с плавным изменением по всей длине потока.

F = m*v²/R [1], где:

F – Центробежная сила;

m – Масса потока на лопасти;

v – Скорость потока;

R – Радиус длины участка потока;

При этом, сила не будет зависеть от радиуса длины участка, так как:

m = ρ*S*L

L = 1/4*2*π*R = π*R/2, где

S – Площадь входа участка потока;

L – Длина участка потока;

Подставляем в формулу [1] и получаем:

F = m*v²/R = ρ*S*L*v²/R = ρ*S* π*R*v²/(R*2);

Сокращаем R и получаем:

F = ρ*S* π*v²/2;

Так как у нас четыре лопасти 2, умножаем на четыре и сила направлена под углом 45º к оси или перпендикулярной плоскости, то еще умножаем на sin(45º). Итого:

F = 2*ρ*S* π*v²*sin(45º);

На сравнительных таблицах показан пример расчета винта самолета Як-52 и Як-55 (таблица №1), (таблица №2), в сравнении с заявляемым винтом потоковым, для разных оборотов винта.

Таблица №1

Таблица №2

Как видно из расчетов, при использовании винта поточного, сила тяги возрастет на 65%. Кроме того, так как кончики обычного винта узкие, то потоки от него, расходясь по конусу, создают громкий звук, при вращении винта. В качестве дополнительного технического эффекта можно сказать, что при использовании заявляемого изобретения, поточный звук работающего винта будет ниже, так как потоки выходящие, имеют диаметр намного больше. Винт поточный можно использовать как для создания вектора тяги в воздушных, водных, подводных судах, так и в ветряных и гидроэлектростанциях.

Таким образом, поставленная перед автором задача, выполнена.

Винт потоковый, представляющий собой вал с закрепленными на нем не менее чем двумя лопастями, закрученными вокруг вала, отличающийся тем, что каждая лопасть представляет собой ¼ части тора без внутренней части и имеет форму спирали с изменяемым шагом.



 

Похожие патенты:

Изобретение относится к способу защиты силовой установки самолета от отрицательной тяги в полете, создаваемой турбовинтовым двигателем с воздушным винтом изменяемого шага. Для защиты силовой установки от отрицательной тяги рассчитывают тягу воздушного винта по измеряемым параметрам воздушного винта определенным образом с использованием параметров полета летательного аппарата и с использованием дополнительного канала управления воздушным винтом по неизмеряемому параметру, ограничивающему минимальную тягу, создаваемую турбовинтовым двигателем, путем воздействия на основной исполнительный механизм управления воздушным винтом, и с использованием защитных функций, воздействующих на элементы гидромеханизма поворота лопастей.

Изобретение относится к устройствам оптимизации использования воздушного или гидропотока при применении лопастных роторов и может быть использовано в авиационной технике, водной технике и ветроэнергетике. Аппарат оптимизации потока перед лопастным ротором состоит из центрального тела и одной и более лопаток с плавно возрастающим радиусом от радиуса центрального тела до радиуса законцовки лопасти.

Группа изобретений относится к системе и способу контроля технического состояния воздушного винта. Система содержит блок обработки информации с процессором, устройство вывода информации.

Изобретение относится к устройствам для создания тяги в газообразной и жидкой средах. Радиальный роторный движитель состоит из вращающейся крыльчатки и внешнего корпуса, предназначенного для преобразования скоростного напора, создаваемого крыльчаткой, в силу тяги движителя.

Изобретение относится к способу изготовления заполняющего тела лопасти винта. Способ включает в себя последовательность этапов послойного добавления материала.

Воздушный винт самолета содержит горизонтальный вал, на котором закреплено многолопастное дисковое колесо с наружной и внутренней обечайками и лопастями с возрастающим углом атаки воздушному потоку. Лопасти выполнены из плоскости диска методом разрезания на секторы с принятой длиной дуги в метрах по расчетному числу лопастей с последующим отгибанием части секторов по линиям отгиба.

Изобретение относится к авиации, в частности к конструкциям воздушных винтов, а также к судостроению, в частности к конструкциям ходовых винтов. Движитель содержит распределительный корпус, вал с шестерней для приема вращения от вала отбора мощности и от двигателя внутреннего сгорания.

Изобретение относится к области судостроения и может быть использовано в конструкциях винтовых движителей регулируемого шага. Гребной винт регулируемого шага установлен на гребном валу и включает в себя ступицу с закрепленными на ней лопастями с обеспечением их поворота относительно ступицы.

Устройство для регулировки угла установки лопастей ротора вентилятора содержит радиальный вал, связанный с лопастью, тягу, осевое перемещение которой приводит к вращению радиального вала, первую и вторую части, а также три силовых цилиндра. Первая часть выполнена с возможностью вращения вместе с ротором вокруг оси вентилятора, причем на ней закреплен один конец каждой тяги, а вторая часть связана с первой частью.

Группа изобретений относится к авиационной технике. Крыло летательного аппарата с убирающимся воздушным винтом включает передний и задний лонжерон, предкрылок, двигатель, воздушный винт, лопасти воздушного винта.

Изобретение относится к области судостроения, а именно к частично погружным лодочным моторам. Привод Арнесона лодочного мотора включает в себя входной вал, переходящий в гребной вал, проходящий внутри дейдвудной трубы, на корпусе которой шарнирно закреплен цилиндр наклона.
Наверх