Способ получения газокерамических материалов



Владельцы патента RU 2780914:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет архитектуры и строительства" (RU)

Изобретение относится к строительным материалам, а именно к ячеистым керамическим изделиям, и может быть использовано при изготовлении элементов ограждающих строительных конструкций. Способ получения строительных газокерамических материалов включает приготовление шихты путем смешивания воды, газообразователя – перекиси водорода и разжижающе-флюсующей добавки – сухого карбоната натрия с аморфной кремнеземистой породой – размолотой до порошкообразного состояния с величиной удельной поверхности частиц 5000-7000 см2/г опокой, загрузку полученной массы в пластиковую форму, установленную на виброплощадке, вспенивание массы при воздействии вибрации в течение 3-5 мин, извлечение пористого сырца из формы, его сушку и обжиг при температуре 900-920°C, при следующем соотношении компонентов, мас.%: указанная опока 64,5-65,3, указанная добавка 0,6-0,8, указанный газообразователь 1,3-2,4, вода – остальное. Технический результат – усовершенствование технологии получения керамических изделий с жесткой ячеистой структурой и повышенной механической прочностью. 3 табл.

 

Изобретение относится к строительным материалам, а именно к ячеистым керамическим изделиям, формируемым способом газообразования, и может быть использовано при изготовлении элементов ограждающих конструкций.

Известна смесь для получения вспененного теплоизоляционного материала со стекловидной структурой, включающая перлит, осадочную кремнеземистую породу (диатомит, трепел, опоку) и газообразователь, которую измельчают до состояния порошка с удельной поверхностью 3000…5000 см2/г при следующем соотношении компонентов, мас.% (А.с. №1073199, С03С 11/00, БИ №6, 1984):

осадочная кремнеземистая горная порода - 15…70

гидрооксид натрия - 6…15

газообразователь - 0,02…1,5

горная порода (перлит) - остальное.

К недостаткам способа относится необходимость совместного измельчения относительно твердой перлитовой породы и осадочной кремнеземистой горной породы (например, диатомита), что увеличивает длительность и энергоемкость процесса помола, а также повышенное содержание гидрооксида натрия, приводящее к увеличению водопоглощения материала и ухудшению его теплоизолирующих свойств.

Упомянутые недостатки частично устранены в способе получения пенокерамических изделий (RU 2349563, С04В 38/02, опубл. 20.03.2009, бюл. №8), который предусматривает перемешивание предварительно приготовленной пены с минеральными компонентами сырьевой смеси, формование, сушку и обжиг изделий. Соотношение компонентов смеси составляет, мас.%:

глина 36,3…41,9
молотый бой керамического кирпича 7,72…9,10
древесные опилки 1,9…4,4
портландцемент 4,25…4,80
отход травления алюминия 3,20…5,30
молотое стекло 6,30…9,70
жидкое стекло 1,25…1,29
пластификатор 0,10…0,20
пена 0,30…0,40
вода 30,1…32,6.

Недостатком указанного способа является большое количество компонентов сырьевой смеси, усложняющее процесс получения материала, а также невысокие значения прочности материала на сжатие.

Известен способ получения теплоизоляционного пеностеклокерамического материала (RU 2483046, МПК С04В 38/02, опубл. 27.05.2013, бюл. №15). Указанный способ включает перемешивание осадочной кремнеземистой горной породы, минерального вяжущего, стабилизирующей и флюсующей добавок, воды и вспенивающего агента, а также формование, сушку и обжиг изделий. В качестве осадочной кремнеземистой горной породы применяется опока (45,5…47,0 %); в качестве минерального вяжущего - шлакопортландцемент (6,5…7,0 %); в качестве стабилизирующей добавки – смесь полиакриламида и карбамидоформальдегидной жидкости (0,8…0,9 %), в качестве флюсующей добавки – легкоплавкая фритта (15,0…17,0 %); в качестве вспенивающего агента – синтетический пенообразователь (0,65…0,70 %). При этом горную породу и фритту предварительно размалывают до удельной поверхности частиц 3500…4000 см2/г.

Недостатком вышеописанного способа является многокомпонентный состав и наличие энергоемкого процесса варки флюсующей добавки.

Наиболее близким аналогом является способ получения строительных газокерамических материалов, включающий приготовление шихты путем смешивания воды, газообразователя – перекиси водорода, разжижающе-флюсующей добавки – сухого карбоната натрия, угольного порошка и перманганата калия с аморфной кремнезёмистой породой – тонкомолотой (т.е. размолотой) опокой, удельная поверхность частиц которой составляет Sуд.= 600-650 м2/кг, загрузку полученной смеси в форму, установленную на виброплощадке, вспенивание в течение 2-3 мин при воздействии вибрации: частота колебаний виброплощадки варьируется в диапазоне 25-50 с-1 при амплитуде 3-5 мм, последующее извлечение пористого сырца из формы, его сушку при температуре 45°С и обжиг при температуре 950°C (Снадин Е.В. Строительная газокерамика на основе трепеловидно-кремнистых разновидностей природных опок: автореф. дисс. на соискание ученой степени канд. техн. наук: специальность 05.23.05 «Строительные материалы и изделия»/Снадин Е.В; Пензенский государственный университет архитектуры и строительства. – Пенза, 2019. – 24с.).

Недостатком вышеописанного способа являются многокомпонентный состав, повышенные температуры сушки и обжига изделий.

Изобретение направлено на совершенствование технологии получения керамических изделий с жесткой ячеистой структурой за счет уменьшения количества сырьевых компонентов, а также повышения механической прочности материала.

Заявленный технический результат достигается за счет осуществления патентуемого способа получения газокерамических изделий, включающего вспучивание высоковязких шликеров под воздействием рационально подобранной вибрационной нагрузки, обеспечивающей управляемое тиксотропное разжижение сырьевой массы на основе кремнеземистой горной породы и мгновенную стабилизацию макроструктуры сырца при достижении заданной величины пористости; добавления в состав соды, усиливающей эффект понижения вязкости и способствующей спеканию газокерамического материала при обжиге.

Улучшение тиксотропных показателей шликера позволило отказаться от использования в составе смеси специальных стабилизирующих добавок и минеральных вяжущих, что сократило количество сырьевых компонентов и упростило процесс приготовления шликера, который, согласно изобретению, включает смешивание осадочной кремнеземистой горной породы (опоки), разжижающе-флюсующей добавки – соды (Na2CO3), газообразователя – перекиси водорода (Н2О2) и воды, при их следующем соотношении, мас.%:

указанная горная порода 64,5…65,3
указанная добавка 0,6…0,8
указанный газообразователь 1,3…2,4
вода остальное.

Для получения газокерамических изделий применяется природная опока, размолотая до порошкообразного состояния с величиной удельной поверхности частиц 5000…7000 см2/г, химический состав которой представлен в таблице 1.

Предложенный способ получения газокерамического материала осуществляют следующим образом. Отмеренное количество газообразователя и добавки растворяют в воде. В полученный раствор добавляют измельченную опоку и перемешивают до однородной массы. Подготовленную массу заливают в пластиковые формы, предварительно установленные на виброплощадке. В зависимости от средней плотности газокерамики продолжительность вспучивания при действии вибрационной нагрузки составляет от 3 до 5 минут. После распалубки осуществляется естественная сушка и обжиг изделий.

Данные экспериментов по получению строительных газокерамических материалов приведены в таблице 2.

Таблица 2


соста-ва
Состав смеси, мас.%
Опока Добавка Газо-образователь Вода
разжижающе-флюсующая корректирующая
угольный порошок перманганат калия
1 64,5 0,8 - - 2,4 32,3
2 65,0 0,7 - - 1,8 32,5
3 65,3 0,6 - - 1,3 32,8
Состав по прототипу
4 66,5…68,8 0,67…0,7 0,395 0,005 2,8 27,5…29,9

Видно, что в предлагаемых составах отсутствуют корректирующие добавки, что существенно сокращает компонентный состав сырьевой смеси, облегчая процесс получения материала. Вибрирование массы при формировании структуры газокерамики, позволяет использовать высоковязкие шликеры с минимальным содержанием воды. Это техническое решение повышает стабильность получения конструкционно-теплоизоляционных материалов с качественной ячеистой структурой и улучшенными показателями прочности на сжатие (таблица 3).

Таблица 3

Свойства Показатели по свойствам
Прототип 1 2 3
Предел прочности на сжатие, МПа 1,3 1,4 3,5 4,5
Средняя плотность, кг/м3 450 450 500 600
Коэффициент теплопроводности, Вт/(м•оС) 0,095 0,09 0,10 0,11

Способ получения строительных газокерамических материалов, включающий приготовление шихты путем смешивания воды, газообразователя – перекиси водорода и разжижающе-флюсующей добавки – сухого карбоната натрия с аморфной кремнеземистой породой – размолотой опокой, загрузку полученной массы в форму, установленную на виброплощадке, вспенивание массы при воздействии вибрации, с последующим извлечением пористого сырца из формы, его сушкой и обжигом, отличающийся тем, используют опоку, размолотую до порошкообразного состояния с величиной удельной поверхности частиц 5000-7000 см2/г, загрузку полученной массы осуществляют в пластиковую форму, процесс вспенивания осуществляют в течение 3…5 мин, а обжиг осуществляют при температуре 900…920°C при следующем соотношении компонентов, мас.%:

Указанная опока 64,5-65,3
Указанная добавка 0,6-0,8
Указанный газообразователь 1,3-2,4
Вода остальное



 

Похожие патенты:

Изобретение относится к приготовлению бетонных смесей. Способ включает перемешивание заполнителей, цемента, пластифицирующей добавки и предварительно активированной воды.

Изобретение относится к производству строительных материалов, в частности к бетонной смеси, и может быть использовано для изготовления бетонных конструкций как монолитных, так и сборных, используемых в строительстве. Техническим результатом является разработка простого и эффективного способа получения бетонной смеси с повышенными показателями кубиковой и призменной прочности, модуля упругости, морозостойкости и водонепроницаемости.

Изобретение относится к строительной промышленности, а именно к устройствам автоклавов для производства строительных материалов, и может быть использовано, например, в производстве ячеисто-бетонных изделий по автоклавной технологии. Автоклав включает корпус, образующий внутреннюю среду, блок задания давления Рз(t) в автоклаве, блок измерения давления Равт в автоклаве, вакуумный насос, привод вакуумного насоса с силовым преобразователем частот.

Изобретение относится к получению пенобетона, используемого при строительстве и ремонте жилых, промышленных зданий и сооружений, где требуется непрерывная подача пенобетонной смеси. Способ получения пенобетонной смеси включает перемешивание в заданном соотношении цемента с водой, заполнителем - песком фракций меньше или равной 0,315 мм и/или армирующей добавкой - микрофиброй в смесителе-активаторе со скоростью вращения рабочих органов 200 - 500 оборотов в минуту с нагревом смеси до 30 - 45 градусов Цельсия и гидроактивацией цемента при водоцементном соотношении от 0,28 до 034, приготовление пенообразователя перемешиванием в течение одной минуты в емкости концентрата протеинового пенообразователя с водой в соотношении от 1:50 до 1:25 с последующей аэрацией полученного раствора пенообразователя сжатым воздухом под давлением 0,5 - 0,6 МПа в пеногенераторе до образования пены кратностью 20 - 40, получение пенобетонной смеси на месте применения пенобетона посредством перемешивания в смесителе-поризаторе со скоростью вращения рабочих органов 100 - 500 оборотов в минуту в заданном соотношении указанной активированной цементной смеси и полученного раствора пенообразователя.
Изобретение относится к области производства строительных материалов и может быть использовано для производства материалов для энергетической, строительной, атомной, металлургической и других отраслей для изготовления строительных, огнестойких и огнеупорных изделий и изоляторов. Огнестойкая теплоизоляционная композиция включает магнезиальное вяжущее, наполнитель в виде 5-25 мас.
Изобретение относится к области производства строительных материалов и может быть использовано для производства огнестойких панелей, перегородок, потолков, дверей и других конструктивных элементов, используемых при строительстве гражданских и промышленных зданий, в которых требуется обеспечение пожаробезопасности и безопасности жизнедеятельности человека.

Изобретение относится к области производства строительных материалов и может быть использовано для изготовления изделий из высокопрочного декоративного бетона, обладающих свойствами свечения в темное время суток в течение всего периода эксплуатации. Способ включает совместное перемешивание предварительно приготовленного порошка фотолюминесцентного пигмента и вяжущего, введение мраморной крошки различных фракций, введение воды затворения, с получением водотвердого отношения, не превышающего 0,45.
Изобретение относится к производству строительных материалов и может найти применение при изготовлении полов, лотков, дорожных ограждений, бортовых камней и других строительных изделий. В частности, изобретение относится к наполнителю, представляющему собой модифицированный солесодержащий шлам производственных отходов.

Группа изобретений относится к строительному материалу и способу изготовления строительного материала. Строительный материал выполнен на шаблоне, имеющем выпукло-вогнутый рельеф.

Изобретение относится к строительным материалам, в частности к самоуплотняющейся бетонной смеси и способу ее приготовления. Техническим результатом является получение самоуплотняющейся бетонной смеси с высокими показателями текучести и сохраняемости подвижности, снижение расхода портландцемента, повышение прочности и морозостойкости бетона.
Изобретение относится к строительным материалам, а именно к ячеистым бетонам, и может быть использовано при производстве теплоизоляционных и конструкционно-теплоизоляционных материалов. Шлакощелочной ячеистый бетон получен из смеси, включающей, мас.%: Череповецкий молотый доменный гранулированный шлак с удельной поверхностью 380 - 400 м2/кг и кислую золу-уноса 27,80 - 46,80, низкомодульное жидкое стекло плотностью 1,23 - 1,27 кг/м3, с модулем щелочного компонента, равным 1,87 - 2,07, и с содержанием Na2О в составе жидкого стекла 10,5% от массы указанного доменного шлака 21,20 - 38,10, кислые золошлаковые отходы фракции 0 - 5 мм и технический углерод 28,30 - 29,10, раствор пергидроля 2,90 - 5,80, причем Череповецкий доменный гранулированный шлак относится к кислой золе-уноса в соотношении 2:1, а кислые золошлаковые отходы фракции 0 - 5 мм относятся к техническому углероду в соотношении 10:1.
Наверх