Спинтронный детектор терагерцовых колебаний на основе наногетероструктуры антиферромагнетик - тяжелый металл

Изобретение относится к области измерительной техники и касается детектора терагерцовых колебаний. Детектор содержит прозрачную для излучения подложку, одна поверхность которой открыта для приема излучения, а на другой размещена гетероструктура на основе последовательно расположенных слоя антиферромагнитного материала, первого слоя немагнитного металла, а также приемные электроды. Дополнительно введен второй слой немагнитного металла, размещенный между подложкой и слоем антиферромагнитного материала. Антиферромагнитный материал представляет собой одноосный проводящий металлический антиферромагнетик с легкой осью анизотропии и снабжен токоподводами для пропускания постоянного электрического тока в плоскости слоя для перестройки частоты детектора. Приемные электроды размещены на поверхности первого слоя немагнитного металла и ориентированы перпендикулярно направлению тока по слою антиферромагнитного материала. Технический результат заключается в обеспечении возможности перестройки частоты детектора. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для детектирования колебаний в диапазоне частот 0,1-5 ТГц.

Известно, что терагерцовое излучение характеризуется частотным диапазоном длин волн 1-0,1 см и соответствующим диапазоном частот 0,3-3 ТГц. Данное излучение имеет широкое практическое применение в медицине и устройствах безопасности, а также для спектроскопии веществ и в астрономии.

Известен выпрямитель антиферромагнитного спинового тока, описанный в ст. Khymyn R. et. al. Antiferromagnetic spin current rectifier. AIP Adv. 7, 055931; doi: 10.1063/1.4977974 (2017), состоящий из двух слоев: антиферромагнитного материала и тяжелого металла. Протекающий через слой тяжелого металла входной переменный ток с помощью спинового эффекта Холла генерирует переменный спиновый ток в антиферромагнитном слое. Выпрямленный спиновый ток с помощью обратного спинового эффекта Холла индуцирует электрическое поле в направлении перпендикулярном слою тяжелого металла, что приводит к появлению электрического напряжения на противоположной стороне слоя тяжелого металла. Недостаток этого устройства заключается в невозможности перестройки частоты такого детектора.

Описан терагерцовый детектор (CN 209927303 U, SHANGHAI INST TECH PHYSICS CAS, 10.01.2020), основанный на вращающем моменте антиферромагнитной спиновой орбиты. Он выполнен в виде гетероструктуры, содержащей слой антиферромагнитного материала и слой ферромагнитного материала, выращенной на монокристаллической подложке. Детектор реализует инжекцию спина из слоя ферромагнитного материала в слой антиферромагнитного материала, в котором возникают самовозбуждающиеся колебания вектора Нееля. Внешнее терагерцовое излучение генерирует постоянную интенсивность намагничивания через механизм фазовой синхронизации в слое антиферромагнитного материала, а обнаружение терагерцового сигнала реализуется путем измерения интенсивности намагничивания слоя антиферромагнитного материала. Недостаток этого устройства заключается в невозможности перестройки частоты такого детектора.

Наиболее близким в патентуемому устройству является детектор терагерцового диапазона (CN 110044476 А, SHANGHAI INST TECH PHYSICS CAS, 23.07.2019) на основе гетероструктуры, содержащей слой антиферромагнитного материала, слой немагнитного металла и электродный слой, выращенной на подложке. При воздействии внешнего терагерцового излучения на слой антиферромагнитного материала, в нем возникают колебания вектора Нееля. На границе раздела антиферромагнетик - немагнитный металл происходит преобразование спиновых волн в электрический ток вследствие обратного спинового эффекта Холла. С помощью электродов, расположенных на слое немагнитного металла, можно детектировать напряжение. Недостаток этого устройства состоит в том, что для возникновения колебаний в антиферромагнитном слое необходим источник терагерцового излучения. Кроме того, частоту такого детектора нельзя перестраивать.

Настоящее изобретение направлено на решение проблемы создания детектора терагерцового излучения, частоту которого можно перестраивать посредством управления постоянным электрическим током.

Детектор терагерцовых колебаний содержит прозрачную для терагерцового излучения подложку, одна поверхность которой открыта для приема переменного терагерцового излучения, а на другой - размещена гетероструктура на основе последовательно расположенных слоя антиферромагнитного материала, первого слоя немагнитного металла, а также приемные электроды.

Дополнительно введен второй слой немагнитного металла, размещенный между подложкой и слоем антиферромагнитного материала, причем антиферромагнитный материал представляет собой одноосный проводящий металлический антиферромагнетик с легкой осью анизотропии, и снабжен токоподводами для пропускания постоянного электрического тока в плоскости слоя для перестройки частоты детектора, а приемные электроды размещены на поверхности первого слоя немагнитного металла и ориентированы перпендикулярно направлению тока по слою антиферромагнитного материала.

Антиферромагнитный материал может быть выполнен из IrMn, а немагнитный металл представляет собой платину.

Технический результат - расширение функциональных возможностей регулирования параметров детектора посредством перестройки частоты постоянным током.

Существо изобретения представлено на чертежах,

где: Фиг. 1 - структура детектора.

Фиг. 2 - зависимость выпрямленного постоянного напряжения от частоты входного воздействия.

Фиг. 3 - зависимость частоты осцилляции от плотности входного постоянного тока.

Фиг. 4 - зависимость чувствительности детектора от плотности входного постоянного тока.

На фиг. 1 представлена структура устройства детектирования терагерцовых колебаний, которое содержит многослойную гетероструктуру, содержащую размещенные на подложке 2 последовательно расположенные первый слой платины 3, слой антиферромагнетика 4, второй слой платины 5 и электроды 6 и 7. Токопровод 9 соединяет второй слой платины 5 и электроды 6 и 7 с вольтметром 8. Первый слой платины 3 подключен к источнику постоянного тока 1 с помощью токопровода 10.

Слой антиферромагнетика 4 должен быть выполнен из одноосного проводящего металлического антиферромагнетика с легкой осью анизотропии, например, IrMn.

Патентуемое устройство может быть реализовано на основе известных материалов и технологий нано- и микроэлектроники.

Подложка 2 может быть выполнена из немагнитного диэлектрика, например: SiO2, MgO, Al2O3, SrTiO3, LiNbO3 или других материалов, используемых в технологии микроэлектроники. Латеральные размеры неограниченны, но подложка 2 должна быть больше размеров первого слоя платины 3 и слоя антиферромагнетика 4.

Первый слой платины 3 и второй слой платины 5 могут иметь толщину от 1 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны терагерцовой частоты порядка 100 мкм.

Слой антиферромагнетика 4 может быть выполнен из одноосного проводящего металлического антиферромагнетика с легкой осью анизотропии, например, IrMn. Толщина слоя варьируется от 1 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны терагерцевой частоты порядка 100 мкм.

Электроды 6 и 7 могут быть выполнены из металла высокой проводимости, например, золота. Толщина электродов варьируется от 1 нм до 1 мкм.

Токопроводы 9 и 10 могут быть выполнены из металла высокой проводимости, например, меди или платины. Предпочтительно, чтобы токопроводы 9, 10 были выполнены из платины.

Принцип функционирования детектора состоит в следующем.

При пропускании переменного терагерцового сигнала 11 со стороны подложки 2 через первый слой платины 3 поток электронов разделяется в пространстве по спину в силу спинового эффекта Холла. Компонента спин-поляризованного тока вблизи контакта между первым слоем платины 3 и слоем антиферромагнетика 4 вызывает перенос спинового момента в слой антиферромагнетика 4, где данный спиновый момент взаимодействует с магнитной подсистемой антиферромагнетика, вызывая колебания намагниченности. Колебания намагниченности вызывают переменный спиновый ток во втором слое платины 5 в силу спиновой накачки. Спиновый ток преобразуется в переменный электрический ток во втором слое платины 5 в силу обратного спинового эффекта Холла. С помощью вольтметра 8 можно детектировать полученное постоянное напряжение со второго слоя платины 5.

Изменение частоты входного тока приводит к резонансной зависимости выходного постоянного напряжения, данная зависимость представлена на фиг. 2. Увеличение плотности входного постоянного тока приводит к изменению частоты резонансных колебаний в режиме выпрямления, как видно на фиг. 3, и изменению чувствительности детектора, как показано на фиг. 4.

Таким образом, из приведенных данных следует, что параметры детектора терагерцовых колебаний могут регулироваться посредством пропускания электрического тока через первый слой платины 3 от источника тока 1, и, тем самым, расширяются функциональные возможности детектора. Кроме того, возбуждение колебаний намагниченности в слое антиферромагнитного материала происходит за счет пропускания переменного терагерцового сигнала 11 по первому слою платины 3.

1. Детектор терагерцовых колебаний, содержащий прозрачную для терагерцового излучения подложку, одна поверхность которой открыта для приема излучения, а на другой - размещена гетероструктура на основе последовательно расположенных слоя антиферромагнитного материала, первого слоя немагнитного металла, а также приемные электроды,

отличающийся тем, что

дополнительно введен второй слой немагнитного металла, размещенный между подложкой и слоем антиферромагнитного материала, причем антиферромагнитный материал представляет собой одноосный проводящий металлический антиферромагнетик с легкой осью анизотропии и снабжен токоподводами для пропускания постоянного электрического тока в плоскости слоя для перестройки частоты детектора, а приемные электроды размещены на поверхности первого слоя немагнитного металла и ориентированы перпендикулярно направлению тока по слою антиферромагнитного материала.

2. Детектор по п. 1, отличающийся тем, что антиферромагнитный материал выполнен из IrMn.

3. Детектор по п. 1, отличающийся тем, что немагнитный металл представляет собой платину.



 

Похожие патенты:

Изобретение относится к устройствам пирометрии и может быть использовано для дистанционного измерения температуры различных объектов с неизвестным коэффициентом излучения. Технический результат заключается в повышении быстродействия измерения температуры объекта измерения.

Изобретение относится к области измерительной техники и касается пирометра истинной температуры. Пирометр содержит объектив, обтюратор, датчик синхронизации, коллиматор, отражательную дифракционную решетку, приемник излучения, блок усиления, устройство управления и вычисления, вычислитель точки экстремума теплового излучения объекта, генератор термопрофиля и монитор.

Изобретение относится к области строительства, в частности для реализации косвенного температурного контроля, может быть использовано во время проведения мониторинга состояния температуры бетонной смеси, при изготовлении железобетонных конструкций. Предложен способ для проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии, в котором измерения производятся бесконтактным способом.

Изобретение относится к области измерительной техники и касается способа термографирования удаленного объекта. Способ включает в себя формирование в заданном спектральном диапазоне изображения удаленного объекта на приемной площадке матричного приемника излучения, регистрацию электрических сигналов с чувствительных элементов приемника и формирование массива цифровых данных температуры объекта.

Изобретение относится к области измерительной техники и касается способа измерения действительной температуры и спектральной излучательной способности объекта. Способ заключается в том, что в заданном спектральном диапазоне поочередно визируют объект двумя однотипными приемниками оптического излучения и измеряют их выходные сигналы.

Предложено транспортное средство. Транспортное средство содержит боковое окно, массив инфракрасных датчиков, включающий в себя первые пиксели разрешающей способности измерения, чтобы контролировать занимающего место человека, и вторые пиксели разрешающей способности измерения, чтобы контролировать боковое окно и контроллер обстановки в кабине.

Способ обнаружения скрытых предметов на теле человека включает регистрацию собственного теплового излучения (ТИ) человека в терагерцевом диапазоне электромагнитных волн с последующей цифровой обработкой анализируемого ТИ-изображения. Формируют набор эталонов, каждый из которых включает в себя: ТИ-изображение скрываемого опасного предмета; контурный препарат (КСП-изображение) этого ТИ-изображения; бинарный черно-белый шаблон этого ТИ-изображения; повернутые и зеркально отраженные варианты ТИ-изображения, КСП-изображения и бинарного шаблона ТИ-изображения.

Изобретение относится к области контрольно-измерительной техники, в частности к устройствам для контроля температурной зависимости вязкости и характеристических температур стекол. Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол включает измерение скорости удлинения образца при постоянной механической нагрузке и при постоянной температуре, при этом нагрев образца в форме полой трубки производится индукционным способом при помощи промежуточного нагревательного элемента из проводящего высокотемпературного материала, помещаемого внутрь образца.

Изобретение относится к области измерительной техники и может быть использовано для определения температуры нити, например, стекловолокна или проволоки. Настоящее изобретение относится к способу определения температуры нити, отличающемуся тем, что включает в себя следующие шаги: вытягивание нити в направлении ее продольной оси вдоль фонового излучателя с известной температурой, получение, в процессе вытяжки, тепловизионным датчиком с пространственным разрешением изображения нити, находящейся перед фоновым излучателем, получение интеграла по диапазону замеров тепловизионного датчика, полностью обнаруживающего, в каждый момент времени, участок нити, находящийся перед фоновым излучателем, вывод заключения о температуре нити посредством сравнения полученного интеграла с контрольным значением.

Изобретение относится к области испытаний твердых тел и может быть использовано для идентификации невидимой ткани. Новым является то, что испытания проводятся в четыре этапа.

Изобретение относится к узлу экрана дисплея и электронному устройству. Техническим результатом является повышение точности управления состоянием экрана дисплея.
Наверх