Способ обработки воды, содержащей ионы тяжелых металлов и серу

Изобретение относится к области обработки шахтных вод и их производных, содержащих ионы тяжелых металлов и сульфаты. Процесс удаления ионов металлов и серы из сульфатсодержащих сточных вод осуществляют в последовательных каскадах, образованных электрокоагулятором с разделенными электродными объемами фильтрующей перегородкой и центрифугой. Исходную воду подают в анодный приэлектродный объем, а вывод осуществляют из катодного приэлектродного объема при напряжении 5-20 В и катодной плотности тока 10-100 А/м2 с последующим осветлением в центробежном поле при соотношении ускорения к ускорению свободного падения а/g в пределах 5-15. Технический результат: высокая эффективность очистки. 3 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к области очистки сточных вод. В частности, к способу обработки шахтных вод и их производных (подотвальных, карьерных, рудничных) путем удаления ионов тяжелых металлов и серы из сточных вод, содержащих сульфат.

Известен способ нейтрализации кислых сточных вод путем фильтрования через слой фильтрующего материала, содержащего двухкальциевые силикаты. В качестве такого материала используется пенобетон обычного твердения плотностью 500-800 кг/м3 и нейтрализацию ведут до рН 11-13 (Патент РФ №2283815 от 20.09.06).

Недостатками способа являются щелочное значение рН сточных вод после выхода из фильтрующей колонки и дороговизна материала.

Известен двухступенчатый процесс нейтрализации сточных вод, включающий в себя фильтрование сточных вод через мелкодисперсный феррохромовый шлак в течение 1 минуты на первой ступени, и нейтрализацию известковым молоком на второй ступени. На первой ступени рН увеличивается до значения 6-7, на второй ступени до 8,5-9,5 (Патент РФ №2207324 от 27.06.2003).

Обшим недостатком представленных является ограниченная возможность достижения очистки по сульфату, обусловленная пределом растворимости сульфата кальция на уровне 1300-1500 мг/дм3.

Способ удаления серных соединений и ионов тяжелых металлов из воды известен из WO 80/02281. Часть сточных вод, содержащих тяжелые металлы и сульфат, подвергают реакции с бактериями, восстанавливающими сульфат, и полученную жидкость, содержащую сульфид, соединяют с оставшейся частью сточных вод для осаждения образующихся нерастворимых сульфидов металла.

В соответствии с JP-A-60-34796 сточные воды, содержащие тяжелые металлы, подвергают реакции с сероводородом для получения нерастворимых сульфидов металлов. Полученную жидкость обрабатывают бактериями, восстанавливающими сульфат, для получения сероводорода, возвращаемого на предыдущую стадию для получения сульфидов металлов. Затем сульфиды металлов отделяют и бактериальный шлам возвращают на стадию бактериальной обработки.

Общим в этих известных способах является то, что нерастворимые сульфиды металлов отделяют после стадии биологического восстановления, что означает, что бактерии смешиваются со всеми образующимися сульфидами металлов; это затрудняет восстановление металлов и может замедлить бактериальный рост. Несмотря на то, что описанный способ обеспечивает эффективное удаление тяжелых металлов и серных соединений из сточных вод, содержащих небольшое или умеренное количество сульфата, его эффективность снижается при высоком уровне сульфата в сточных водах, например, 10 г/л или более, предположительно, из-за интоксикации бактерий, восстанавливающих сульфат. Более того, известный способ не обеспечивает селективного осаждения и повторного использования тяжелых металлов. Здесь необходимо добавить, что методы, основанные на использовании бактерий требуют выдерживания достаточно жестких температурных условий, что является значимым ограничением климатических условий.

Решаемой проблемой заявляемого способа, является достижение высокой эффективности очистки при значимо меньших ресурсных затратах в любых климатических условиях.

Сущность заявляемого технического решения состоит в том, что в способе удаления ионов металлов и серы из сульфатсодержащих сточных вод путем синтеза и последующего выделения сульфидов, отличающийся тем, что процесс осуществляют в последовательных каскадах, образованных электрокоагулятором с разделенными электродными объемами фильтрующей перегородкой и центрифугой при этом исходную воду подают в анодный приэлектродный объем, а вывод осуществляют из катодного приэлектродного объема при напряжении 5-20 В и катодной плотности тока 10-100 A/м2 с последующим осветлением в центробежном поле при соотношении ускорения к ускорению свободного падения а/g в пределах 5-15.

При этом способ отличается тем, что вывод из катодных приэлектродных объемов осуществляют через гидрозатвор.

Кроме того, используют центрифуги с боковой импульсной выгрузкой осадка, а в качестве анода используют титан с нанесенным оксидом рутения.

В предлагаемом способе используется объективное свойство системы - неизбежное присутствие значимой концентрации серы с нулевой валентностью. В режиме катодного восстановления наряду с образованием водорода идет восстановление нулевой серы в состояние S2- и последующее осаждение соединений меди, свинца, цинка, железа и других металлов в соответствие с их произведениями растворимостей. Отметим при этом, что в прикатодной области одновременно с образованием сульфидов достигается повышение рН системы до нейтральных значений. Последнее приводит к тому, что дополнительно осаждаются гидратные труднорастворимые соединения. Проведенными исследованиями показано, что в прианодном пространстве при этом значение рН остается на первозданном уровне, газовыделение практически отсутствует, а водный объем остается прозрачным. Напротив, в катодном приэлектродном пространстве отчетливо наблюдается выпадение твердой фазы и с некоторой задержкой времени эмиссия водорода. Из электролизера выходит агрегативно устойчивая суспензия, состав которой остаточная коллоидная сера, малорастворимые тонкодисперсные сульфиды и гидроксидоподобные осадки металлов в воде. Эффективное разделение такой системы наиболее полно достигается в центробежном поле с указанным превышением ускорения над ускорением свободного падения. Наиболее предпочтительным вариантом разделения фаз с высокой удельной нагрузкой следует признать использование центрифуг с вертикальным валом и боковой импульсной выгрузкой осадка. Использование нерастворимого анода обеспечивает самую высокую концентрацию ценных компонентов в твердой фазе.

Сущность способа поясняется примерами.

Пример 1. Моделирование процесса осуществляли с использованием лабораторного электрокоагулятора, схема которого представлена на чертеже (фиг. 1) лабораторной пробирочной центрифуги с регулируемым числом оборотов в пределах1500-4500об/мин. В качестве исходной воды использовались реальные шахтные воды самопроизвольного излива законсервированных шахт Левихи. Обработку вод осуществляли в свежем виде без консервации. Окислительные процессы за счет контакта с атмосферным воздухом исключали заполнением канистр под герметичную крышку и хранением при затемнении. В качестве анодного материала использовали алюминий. Катод-нержавеющая сталь Х18Н10Т В процессе электролиза отслеживали изменение силы тока при постоянном напряжении и изменение значения рН в приэлектродных объемах. В качестве фильтрующей ткани использовали вискозу.

Пример 2. В отличие от примера 1 в качестве анодного материала использовали сталь 3, эквивалентной площади.

Пример 3. В качестве анодного материала использовали пластину из стеклографита (имитация нерастворимого анода). Основное отличие моделирования в примере обнаружено в эмиссии кислорода с поверхности анода.

Результаты моделирования представлены в таблице

Состав воды Исходный Пример1 Пример2 Пример3
Значение рН 4,1 6,4 7,1 6,9
Сульфат-ион мг/дм3 7975 292 240 102,4
Сухой остаток мг/дм3 9642 439 712 236
Железо общее мг/дм3 373 1,47 0,271
Цинк мг/дм3 379 17,6 0,082 0,016
Медь мг\дм3 22,0 0,168 0,059 0,005
Алюминий мг/дм3 159,1 4,37 48,2 0,143
Марганец мг/дм3 20,1 15 0,098 0,246
Кальций мг/дм3 31,0 18,0 9,6 14
Магний мг/дм3 114,0 32 11,4 17

Характер изменения токовой нагрузки и изменения значения рН в катодном приэлектродном объеме представлены на чертеже (фиг. 2).

Таким образом заявляемое техническое решение позволяет без использования реагентов достичь нейтральных значений рН воды и высокой эффективности очистки от ионов тяжелых металлов. При этом твердая фаза, выделенная из воды может представлять товарный продукт- концентрат тяжелых металлов. Дифрактограмма продукта по примеру 3 представлена на чертеже с указанием концентраций компонентов в массовых % (Фиг. 3).

1. Способ удаления ионов металлов и серы из сульфатсодержащих сточных вод путем синтеза и последующего выделения сульфидов, отличающийся тем, что процесс осуществляют в последовательных каскадах, образованных электрокоагулятором с разделенными электродными объемами фильтрующей перегородкой и центрифугой, при этом исходную воду подают в анодный приэлектродный объем, а вывод осуществляют из катодного приэлектродного объема при напряжении 5-20 В и катодной плотности тока 10-100 А/м2 с последующим осветлением в центробежном поле при соотношении ускорения к ускорению свободного падения а/g в пределах 5-15.

2. Способ по п. 1, отличающийся тем, что вывод из катодных приэлектродных объемов осуществляют через гидрозатвор.

3. Способ по п. 1, отличающийся тем, что используют центрифуги с боковой импульсной выгрузкой осадка.

4. Способ по п. 1, отличающийся тем, что в качестве анода используют титан с нанесенным оксидом рутения.



 

Похожие патенты:

Изобретение относится к фильтру для очистки нефтесодержащих вод, содержащему корпус, патрубки для подвода очищаемой воды, вывода отсепарированных нефтепродуктов и очищенной воды, металлические сетки, ограничивающие гранулированный наполнитель, в качестве фильтрующей загрузки используется дважды просеянный морской песок с размером частиц 0,5-1,0 мм, в верхней части корпуса фильтра установлен кольцевой перфорированный коллектор для подвода очищаемой воды, который выполнен в виде кольца с отверстиями снизу, причем суммарная площадь отверстий больше площади входного отверстия коллектора, характеризующемуся тем, что цилиндрический корпус фильтра выполнен цельносварным сужающимся кверху, в верхней части которого имеется горловина с резьбой на верхней части диаметром, меньшим корпуса фильтра для загрузки фильтрующего материала, которая закрывается крышкой с резьбой и резиновой прокладкой, расположенной в канавке, на верхней поверхности крышки установлены патрубок для отвода отфильтрованных нефтепродуктов и манометр, по бокам съемной крышки имеются ручки для ее плотного закручивания на корпусе, на патрубке ввода очищаемой воды установлен дроссельный клапан, выходной патрубок для очищенной воды проходит вдоль корпуса фильтра вверх до уровня верхней крышки фильтра и имеет клапан для подвода промывочной воды, при этом верхняя ограничительная металлическая сетка выполнена съемной и гибкой, коллектор для вывода очищенной воды обернут металлической сеткой с размером ячейки 0,5 мм.

Изобретение относится к области водоотведения, а также системам (устройствам) определения параметров процесса обработки сточных вод. Раскрыта система определения концентрации веществ в аэротенке, включающая аэротенк/аэротенки, вторичный отстойник/отстойники, аэрационную установку, модуль ввода характеристик аэротенка/аэротенков, модуль анализа диагностируемых параметров, блок определения времени нахождения сточной воды в компонентах аэротенка/аэротенков, блок ввода фактических значений расхода кислорода, подаваемого аэрационной установкой, блок определения концентраций веществ в сточной воде в компонентах аэротенка/аэротенков и блок вывода результатов.

Изобретение относится к области очистки природных и сточных вод и может применяться на сооружениях для очистки природных и сточных вод. В способе коагуляции загрязнений природных и сточных вод в камере хлопьеобразования 1 вращают мешалку 2 с помощью мотор-редуктора 3.

Система относится к области водоотведения, а также к системам управления процессом очистки сточных вод и может быть использована для при создании новых или реконструкции существующих станций очистки бытовых, концентрированных по органическим загрязнениям хозяйственно-бытовых и близких к ним по составу сточных вод.
Изобретение может быть использовано в горнодобывающей промышленности в процессах обогащения алмазоносных кимберлитовых пород для осветления оборотной воды. Способ очистки воды от сапонитсодержащего материала и песка включает разбавление водой пробы пульпы, взятой с глубины хвостохранилища не ниже 1 м, с концентрацией взвешенных веществ от 300 до 400 г/л, в соотношении 1:1, отстаивание в течение 30 мин.

Изобретение относится к пористому блочному фильтрующему материалу для комплексной очистки питьевой воды. Фильтрующий материал содержит мелкодисперсные частицы активированного угля и полимерного связующего.

Группа изобретений относится к комплексной переработке бромоносного поликомпонентного гидроминерального сырья. В качестве сырья используют промысловые рассолы хлоридного кальциево-магниевого типа нефтегазодобывающих предприятий.

Техническое решение относится к системам и способам очистки воды методом перекристаллизации и используемым в них теплообменным устройствам для периодического замораживания и оттаивания льда. Согласно способу получают требуемые параметры воды по чистоте (ppm), водородный показатель pH, окислительно-восстановительный потенциал воды.

Изобретение относится к получению воды фармакопейного качества и может быть использовано в медицине. Исходную воду предварительно очищают в устройствах 1 и 2 обратного осмоса и электродеонизации соответственно.

Группа изобретений относится к светоизлучающему устройству для покрытия участка поверхности. Светоизлучающее устройство (1) содержит светоизлучающие блоки (10), расположенные по схеме (20) заполнения плоскости, для покрытия значительного участка поверхности.

Изобретение относится к машиностроению и может быть использовано при эксплуатации гидроприводных и смазочных устройств. Аппарат для очистки отработанного масла от металлических примесей состоит из емкости с герметичной крышкой, фильтра и сливного крана.
Наверх