Катализатор, модифицированный хитозаном, для селективного гидрирования пиридина и его производных и процесс гидрирования пиридина и его производных с использованием катализатора, модифицированного хитозаном

Изобретение относится к области каталитических технологий переработки сырья, содержащего азотистые гетероциклические соединения, и касается, в частности, катализаторов и способа переработки пиридина и его производных в ценные продукты - гидрированные гетероциклические соединения. Заявляемый катализатор для гидрирования пиридина и его производных содержит монометаллические наночастицы палладия или биметаллические наночастицы палладия-меди со средним размером 2-3 нм на носителе - оксиде алюминия, модифицированном хитозаном. Заявляемый катализатор позволяет повысить селективность процесса при сохранении высокой конверсии гетероциклического соединения, а также повысить стабильность катализатора в последовательных циклах гидрирования. 1 табл., 1 пр.

 

Область техники

Изобретение относится к области каталитических технологий переработки сырья, содержащего азотистые гетероциклические соединения, и касается, в частности, катализаторов и способа переработки пиридина и его производных в ценные продукты - гидрированные гетероциклические соединения. Пиперидин как продукт гидрирования пиридина и его производные востребованы в производстве лекарств и других ценных продуктов. Пиридин и его производные являются доступными соединениями, получаемыми при переработке каменного угля и нефтепродуктов, например, циклизацией ацетиленовых соединений в присутствии аммиака.

Уровень техники

Для гидрирования пиридина и его производных используют гомогенные катализаторы и металлокомплексы на основе благородных металлов, однако, их существенным недостатком является трудность отделения от реакционной среды (продукта) и невозможность повторного использования. Известен способ гидрирования пиридина и его производных с использованием катализаторов, содержащих наночастицы кобальта, это единственный пример использования неблагородных металлов в каталитическом гидрировании пиридина и его производных [Chen F., Li W., Sahoo B., Kreyenschulte C., Agostini G., Lund H., Junge K., Beller M., Hydrogenation of Pyridines Using a Nitrogen-Modified Titania-Supported Cobalt Catalyst, Angewandte Chemie - International Edition, 2018, 57(44), pp. 14488-14492]. Недостатком указанного способа является недостаточно высокая стабильность катализатора, который теряет свою активность в нескольких последовательных циклах вследствие спекания и укрупнения наночастиц кобальта.

Гетерогенно-каталитическое гидрирование пиридина и его производных преимущественно проводится с использованием катализаторов на основе благородных металлов [Reshma Kokane, Yann Corre, Erhard Kemnitz, Mohan K. Dongare, Francine Agbossou-Niedercorn, Christophe Michon, Shubhangi B. Umbarkar, New J. Chem., 2021, 45, 19572-19583]. Например, в работе [Yu, X., Nie, R., Zhang, H., et al., Microporous and Mesoporous Materials, 2018, 256, pp. 10-17] описаны катализаторы на основе рутения (2,5 вес. %) на мезопористом углеродном носителе, допированном азотом, которые исследованы в гидрировании хинолина при 40°C и 10 атм H2. Частота оборотов для этого катализатора (TOF) составила 71.0 ч−1.

Rh- и Ru-катализаторы показали высокую активность лишь при содержании благородного металла 10 вес. % [Hattori, T., Ida, T., Tsubone, A., et al. Facile arene hydrogenation under flow conditions catalyzed by rhodium or ruthenium on carbon, European Journal of Organic Chemistry, 2015, 2015(11), pp. 2492-2497].

72 различных моно-, би- и триметаллических катализатора на оксидных носителях были испытаны в гидрировании пиридина и хинолина [Beckers, N.A., Huynh, S., Zhang, X., Luber, E.J., Buriak, J.M. Screening of heterogeneous multimetallic nanoparticle catalysts supported on metal oxides for mono-, poly-, and heteroaromatic hydrogenation activity, ACS Catalysis, 2012, 2(8), pp. 1524-1534].

Наночастицы родия размером около 1,5 нм, нанесенные на оксид алюминия, также активны в гидрировании пиридина [Buil, M.L., Esteruelas, M.A., Niembro, S. et al. Dehalogenation and hydrogenation of aromatic compounds catalyzed by nanoparticles generated from rhodium bis(imino)pyridine complexes. 2010, Organometallics, 29(19), pp. 4375-4383; Maegawa, T., Akashi, A., Yaguchi, K. et al. Efficient and Practical Arene Hydrogenation by Heterogeneous Catalysts under Mild Conditions. Chemistry - A European Journal, 2009, 15(28), pp. 6953-6963].

Pd/C, Pt/C, и Rh/C катализаторы с высоким содержанием металлов были изучены в гидрировании пиридинов водородом, выделяющимся через мембрану при in-situ электролизе воды (30-80 атм, 60-80°С) [Irfan, M., Petricci, E., Glasnov, T.N., Taddei, M., Kappe, C.O. Continuous flow hydrogenation of functionalized pyridines. European Journal of Organic Chemistry, 2009, (9), pp. 1327-1334]. Однако, производительность системы была очень низкой, поскольку скорость гидрирования определялась скоростью доставки водорода к катализатору, который был размещен на поверхности картриджа.

Наиболее близким к заявляемому изобретению является палладиевый катализатор на углеродном носителе для гидрирования пиридинов, свойства которого изучены в гидрировании арилпиридинов различного строения [Barwinski, B., Migowski, P., Gallou, F., Franciò, G., Leitner, W. Continuous-flow hydrogenation of 4-phenylpyridine to 4-phenylpiperidine with integrated product isolation using a CO2 switchable system, Journal of Flow Chemistry, 2017, 7(2), pp. 41-45]. Катализатор представляет собой палладий нанесенный на уголь состава 10 мас. % Pd/C (Evonik AG). Максимальная селективность по фенилпиперидину в гидрировании фенилпиридина составила 96% при конверсии последнего 87%. Катализатор стабильно работал в течение 4 часов.

Все перечисленные катализаторы легко отравляются соединениями азота и дорогостоящие, поскольку содержат значительные количества дорогостоящих металлов (от 2 до 10 вес. %).

Технической проблемой, решаемой заявляемым изобретением, является создание эффективного катализатора для гидрирования пиридина и его производных, позволяющего повысить селективность процесса при сохранении высокой конверсии гетероциклического соединения, а также повысить стабильность катализатора в последовательных циклах гидрирования.

Раскрытие изобретения

Техническим результатом заявляемого изобретения является получение катализатора для гидрирования пиридина и его производных, с селективностью по полностью гидрированному соединению 100% при конверсии гетероциклического соединения 98% и стабильностью катализатора не менее 5 часов с использованием последовательных циклов гидрирования.

Технический результат достигается катализатором для гидрирования пиридина и его производных, содержащим монометаллические наночастицы палладия или биметаллические наночастицы палладия-меди со средним размером 2-3 нм на носителе - оксиде алюминия, модифицированном хитозаном. Содержание палладия составляет 0,5 мас. %. В литературе и патентах отсутствуют примеры, иллюстрирующие применение моно- и биметаллических наночастиц, нанесенных на оксид алюминия, модифицированный хитозаном, для гидрирования пиридина и его производных.

Оксид алюминия модифицируют хитозаном (5 вес. %) пропиткой из водного раствора и сушкой при 80°С в течение 2 часов. Медь (1 вес. %) наносят методом пропитки по влагоемкости водным раствором нитрита меди с последующей сушкой при 100°С в течение 2 часов и прокалкой при 300°С в течение 2 часов. Палладий (0,5 мас. %) наносят методом осаждения с использованием водного раствора PdCl2 с добавлением мочевины, с последующей сушкой при 100°С в течение 2 часов и обработкой водородом при 200°C в течение 2 часов. Селективное гидрирование пиридина и его производных проводили в изотермическом режиме во встряхивающем реакторе при 60°C на катализаторах Pd и Pd-Cu, нанесенных на оксид алюминия, а также на оксид алюминия, модифицированный хитозаном.

Синтезированные моно- и биметаллические катализаторы, нанесенные на оксид алюминия, модифицированный хитозаном, характеризуются более высокой активностью в селективном гидрировании пиридина и его производных по сравнению с монометаллическим или биметаллическим катализатором, нанесенным на немодифицированный оксид алюминия. Металлические частицы палладия ответственны за активацию гетероциклического соединения и активацию водорода. Таким образом, частицы Pd-Cu проявляют синергетический эффект при селективном гидрировании пиридина и его производных.

Осуществление изобретения

Пример 1.

Предварительно измельченные 2 г Al2O3 фракции 0.25-0.5 мм пропитали 1,5 мл водного раствора хитозана (1,4 мл H2O + 0,1 г хитозана), затем полученную массу сушили при 80°С в течение 2 часов. Полученный 5%Chit/Al2O3 пропитали 1,5 мл водного раствора Cu(NO3)2 (1,42 мл H2O + 0,08 г Cu(NO3)2·3H2O), с последующей сушкой при 100°С в течение 2 часов и прокалкой при 300°С в течение 2 часов. Полученный 1%Cu/5%Chit/Al2O3 пропитали 1,5 мл водного раствора PdCl2 с добавлением мочевины (1,4 мл H2O + 0,01 г PdCl2 + 0,09 г мочевины), с последующей сушкой при 100°С в течение 2 часов и обработкой водородом при 200°C в течение 2 часов. Таким образом был получен образец катализатора 0,5%Pd-1%Cu/5%Chit/Al2O3 (0,5 вес. % палладия, 1 вес. % меди и 5 вес. % хитозана).

Максимальная активность в жидкофазном гидрировании пиридина и его производных (60°С, давление H2 70 атм) наблюдалась для катализатора с размером нанесенных наночастиц 2-3 нм. Эта взаимосвязь объяснена наличием низкокоординированных атомов палладия, которые являются активными центрами для активации водорода и адсорбции гетероциклического соединения. Более высокая активность катализаторов, модифицированных хитозаном и медью объясняется также более высокой дисперсностью и более малым размером частиц палладия, что подтверждается данными XRD и ТЕМ: размеры частиц 2-3 нм для модифицированных катализаторов и 5-10 нм для немодифицированных катализаторов.

Таблица. Результаты испытаний катализаторов в реакции гидрирования пиридина и его производных в присутствии катализаторов в течение 5 часов, представляющих собой наночастицы Pd и Pd-Cu, нанесенные на оксид алюминия и оксид алюминия, модифицированный хитозаном (60°С, давление H2 70 атм).

№ п/п Катализатор Конверсия гетероциклического соединения, % Селективность по полностью гидрированному соединению, %
1 1%Pd/Al2O3 (образец сравнения) 85 87
2 0,5%Pd/5%Chit/Al2O3 95 96
3 0,5%Pd-1%Cu/Al2O3 97 99
4 0,5%Pd-1%Cu/5%Chit/Al2O3 98 100

Использование биметаллического катализатора, содержащего наночастицы палладия и меди, нанесенные на модифицированный хитозаном оксид алюминия, позволяет проводить процесс более эффективно.

Катализатор для селективного гидрирования пиридина и его производных, отличающийся тем, что представляет собой нанесенные на носитель биметаллические наночастицы палладия-меди или палладия-серебра со средним размером 2-3 нм, при следующем содержании компонентов: палладия - 0,5 вес. %, меди - 1 вес. %, носитель - остальное, где в качестве носителя используют оксид алюминия, модифицированный хитозаном в количестве 5 вес. %.



 

Похожие патенты:
Изобретение относится к области каталитических технологий переработки сырья, содержащего азотистые гетероциклические соединения, и касается, в частности, катализаторов и способа переработки пиридина и его производных в ценные продукты - гидрированные гетероциклические соединения. Заявляемый катализатор для гидрирования пиридина и его производных содержит наночастицы палладия и меди или серебра со средним размером 2-3 нм на носителе - оксиде алюминия.

Изобретение относится к способу извлечения сырья для парового крекинга. Изобретение касается способа удаления легких газов из потока углеводородного сырья, включающего этилен, этан и более тяжелые углеводороды, который включает в себя абсорбцию диоксида углерода, сульфида водорода и карбонилсульфида из потока углеводородного сырья посредством контакта с растворителем с получением потока абсорбированного углеводородного сырья; гидрогенизацию ацетилена в потоке абсорбированного углеводородного сырья до этана и этилена с получением потока гидрогенизированного углеводородного сырья; удаление потока более тяжелого углеводородного сырья из легких газов, представляющих собой водород, монооксид углерода, азот и метан, в потоке гидрогенизированного углеводородного сырья; деметанизацию потока более тяжелого углеводородного сырья с получением потока верхнего продукта, содержащего водород, монооксид углерода, азот и метан, и потока чистого нижнего продукта содержащего этилен, этан и более тяжелые углеводороды.

Изобретение относится к получению ненасыщенных углеводородов, к катализатору селективного гидрирования и к способам его получения и применения. Описана композиция, содержащая экструдированную неорганическую подложку, содержащую оксид металла или металлоида, и по меньшей мере один каталитически активный металл группы 10.
Изобретение относится к селективным гетерогенным никелевым катализаторам гидрирования ненасыщенных углеводородов и сероочистки, к их способам получения и применения. Описан селективный гетерогенный катализатор, содержащий никель, нанесенный на носитель, представляющий собой либо диатомитовый порошок, имеющий следующие физические свойства: площадь поверхности по БЭТ от 20 до 50 м2/г, размер частиц менее 10 мкм - не более 15 мас.%, более 71 мкм - не более 40 мас.%, 10-71 мкм - остальное, либо таурит сланцевый дезинтеграционный, имеющий следующие физические свойства: площадь поверхности по БЭТ от 12 до 16 м2/г, размер частиц менее 10 мкм - не более 40 мас.%, либо их смесь в соотношении 50:50.
Изобретение относится к очистке олефиновых потоков различного происхождения от примеси полиненасыщенных углеводородов, в частности к катализаторам очистки олефинового сырья для процессов полимеризации методом избирательного гидрирования полиненасыщенных примесей. .
Изобретение относится к способу изомеризации ксилолов в сырье, содержащем неравновесную смесь двух или более ксилолов и необязательно этилбензола, характеризующемуся тем, что поток сырья контактирует с каталитически эффективным количеством слоистого катализатора в условиях изомеризации, включающих температуру от 100 до 550°С, абсолютное давление от 10 кПа до 5 МПа и молярное соотношение водорода и углеводородов от 0,5:1 до 6:1, достаточных для получения потока продуктов изомеризации, содержащих ксилолы, в котором пара-ксилол составляет, по меньшей мере, 23 мас.%, орто-ксилол, по меньшей мере, 21 мас.%, и мета-ксилол, по меньшей мере, 48 мас.%, причем указанный катализатор имеет альфа-оксидалюминиевый каркас, имеющий основной размер, по меньшей мере, 300 мкм, и слой на указанном каркасе, при этом указанный слой имеет MFI структуру молекулярного сита с диаметром пор от 4 до 8 Å, и оксидалюминиевый или гамма оксидалюминиевый связующий материал, и имеющий толщину меньше чем 250 мкм, и, по меньшей мере, один компонент гидрирующего металла, который выбирают из группы, состоящей из Pt и Мо, когда связующий материал представляет собой фосфат алюминия и Re, когда связующий материал представляет собой гамма-оксидалюминий, причем, по меньшей мере, 75 мас.% компонента гидрирующего металла в катализаторе содержатся в слое, в котором суммарное количество образовавшихся толуола и триметилбензола составляет меньше чем 3 мас.% от суммы ксилолов и этилбензола в потоке сырья.

Изобретение относится к селективному удалению ацетиленовых соединений из потоков углеводородов с использованием специфических катализаторов на основе Ni. .

Изобретение относится к усовершенствованному способу удаления ацетиленовых соединений из потоков углеводородов, включающему приведение в контакт потока углеводородов, содержащего первую концентрацию ацетиленовых соединений и олефинов, с катализатором, состоящим из несульфидированного металлического никеля на носителе либо состоящим из несульфидированного металлического никеля на носителе, модифицированного такими металлами, как Мо, Re, Bi или их смеси, причем указанный несульфидированный никель присутствует на носителе в количестве, превосходящем, по меньшей мере, на 5% количество, необходимое для селективного гидрирования, в присутствии водорода в первой реакционной зоне при температуре и давлении, а также концентрации водорода, способствующих гидрированию ацетиленовых соединений, и выделение указанного углеводородного сырья, имеющего вторую концентрацию ацетиленовых соединений, которая ниже, чем первая концентрация.
Изобретение относится к области каталитических технологий переработки сырья, содержащего азотистые гетероциклические соединения, и касается, в частности, катализаторов и способа переработки пиридина и его производных в ценные продукты - гидрированные гетероциклические соединения. Заявляемый катализатор для гидрирования пиридина и его производных содержит наночастицы палладия и меди или серебра со средним размером 2-3 нм на носителе - оксиде алюминия.
Наверх