Датчик теплового потока

Изобретение относится к устройствам для измерения тепловых потоков, в том числе нестационарных, в частности, для измерения теплового потока на поверхности твердого тела от движущейся среды. Устройство для исследования тепловых потоков на поверхности объектов в высокоскоростных газовых потоках на кратковременных интервалах имеет дополнительно две пары электродов, разнозарядных с соседними, на равном расстоянии друг от друга, образующих квадрат. При этом средняя линия противоположной стороны плоской контактной поверхности термочувствительного элемента, обращенной к потоку, содержит метку по средней линии для ориентации датчика по направлению потока, при этом метка расположена между двумя разнозарядными электродами. Технический результат - увеличение точности и расширение функциональных возможностей. 2 ил.

 

Изобретение относится к устройствам для измерения тепловых потоков, в том числе нестационарных, в частности, для измерения теплового потока на поверхности твердого тела от движущейся среды. Возможно его применение для измерения температуры и теплового потока на поверхностях, нагреваемых высокоскоростным газовым потоком, например, моделей летательных аппаратов. Для этого датчик теплового потока встраивают в поверхность модели. Его максимальное время измерения зависит от внешней температуры и составляет до нескольких микросекунд. Из изменения температуры вместе с теплотворной способностью датчика можно рассчитать тепловой поток. Известен датчик температуры [патент РФ на изобретение № 2494357, МПК G01K 7/12, опубл. 27.09.2013],  для использования при измерении температуры проходящих газовых потоков при испытаниях и эксплуатации газотурбинных двигателей. Датчик температуры содержит корпус с наружной поверхностью переменного сечения со ступенчатым выступом, переходящим в цилиндрическую часть, внутри которого вдоль продольной оси корпуса расположены термоэлектроды термопарного кабеля с образованным на конце рабочим спаем внутри охранной зоны с элементами его крепления к объекту измерения и фиксации кабеля на наружной части. При этом корпус датчика выполнен единой, цельной конструкцией, включающей охранную зону. Узел герметизации на выходе термопарного кабеля из корпуса выполнен в виде цилиндрической заглушки с двумя глухими отверстиями под установку неразъемным соединением двух концов проволок, которые расположены с двух диаметрально противоположных сторон термопарного кабеля. Термопарный кабель состоит из оболочки, внутри которой расположены термоэлектроды, которые, начиная от спая, изолированы друг от друга и от оболочки и расходятся от спая на две параллельные линии.

Данное устройство термопарой измеряет температуру газового потока, но не измеряет тепловой поток на поверхности объекта.

Известен датчик теплового потока и способ его изготовления [патент РФ на изобретение № 2131118, МПК G01K 17/20, G01K 7/02, опубл. 27.05.1999 ]. Датчик теплового потока содержит калориметрическое тело в форме цилиндра. Кольцевая проточка образует в калориметрическом теле два коаксиальных цилиндра с общим основанием. Во внутреннем цилиндре установлена термопара. Калориметрическое тело дополнительно имеет конусообразную поверхность. Линия пересечения образующих конусообразной поверхности и образующих внутреннего цилиндра расположена на расстоянии δ = 0,01 - 10 мм от тепловоспринимающей поверхности, а угол между образующими конусообразной и цилиндрической поверхности равен 5 - 45°.

Данное устройство содержит коаксиальные цилиндры, поэтому проблематично использовать его для измерения быстро протекающий процессов. Быстродействие в несколько в мили и микро-секундах, определяет малая толщина тепловоспринимающего тела. Кроме того, устройство сложно в изготовлении. В частности, трудно выполнить пересечение конусообразных цилиндров на расстоянии до 10 микрон, а также контролируемую деформацию в указанной области.

Наиболее близким техническим решением является «Датчик теплового потока» [патент РФ на полезную модель № 28771, МПК G01K 17/08, G01K 17/20, опубл.10.04.2003]. Он содержит теплоприемник, выполненный в виде полого цилиндра, термочувствительный элемент с плоской контактной поверхностью, выполненный в виде тела вращения и соединенный с торцом теплоприемника, и дифференциальную термопару. Теплоприемник выполнен тонкостенным из теплоизоляционного материала, а плоская контактная поверхность термочувствительного элемента выполнена в виде кольца из теплопроводного материала. Дифференциальная термопара выполнена из двух последовательно соединенных термопар, одна из которых установлена на контактной поверхности, другая - внутри теплоприемника.

Данное устройство измеряет тепловой поток, распространяющийся внутрь термочувствительного элемента. Это существенно для процессов с медленным прогревом термочувствительного элемента.

Недостаток устройства в невозможности его использования для быстропротекающих процессов по поверхности термочувствительного элемента. За короткое время, в несколько мкс, нагрев задней стороны термочувствительного элемента, к которой подключена вторая термопара, несущественен, а первая термопара измеряет лишь температуру поверхности, но не тепловой поток по поверхности.

Задачей предлагаемого изобретения является создание устройства для исследования тепловых потоков на поверхности объектов в высокоскоростных газовых потоках на кратковременных интервалах, с увеличением точности и расширением функциональных возможностей.

Поставленная задача достигается тем что, датчик теплового потока, содержащий теплоприемник, выполненный в виде полого цилиндра из теплоизоляционного материала, термочувствительный элемент из теплопроводного материала с плоской контактной поверхностью, выполненный в виде тела вращения и соединенный с торцом теплоприемника, дополнительно имеет две пары электродов, разнозарядных с соседними, на равном расстоянии друг от друга, образующих квадрат, при этом средняя линия противоположной стороны плоской контактной поверхности термочувствительного элемента, обращенной к потоку, содержит метку по средней линии для ориентации датчика по направлению потока, при этом метка расположена между двумя разнозарядными электродами.

Предлагаемое изобретение иллюстрируется следующими чертежами.

На фиг.1. показана схема заявленного устройства, вид сверху, где обозначены: 1 - теплоприемник из теплоизоляционного материала, 2 - термочувствительный элемент из теплопроводного материала, 3 - метка направления потока.

На фиг.2 показана схема заявленного устройства, вид снизу.

Здесь обозначены : 1 - теплоприемник из теплоизоляционного материала, 2-термочувствительный элемент из теплопроводного материала, 4-7 – электроды, причем 4 и 7 – положительно зарядные, а 5 и 6 - отрицательно разнозарядные электроды; а –расстояние между электродами. Стрелкой показано направление потока,

Варианты снятия информации и подключения электродов:

(4,5) - (6.7) = оценка ошибки измерений;

((4,5) + (6,7))/2 = среднее значение;

(4.7) – (5,6) = усиление сигнала вдвое;

(4.6) – (5,7) = увеличение точности.

При быстропротекающих процессах скорость нарастания температуры отстает от скорости движения первичного фронта быстро движущегося источника теплоты [Кархин В.А. «Основы теплопередачи при сварке и райки» Учебное пособие. Спб 2011 г. Раздел 2.6. Быстродвижущиеся источники теплоты, стр. 36.с] или ударной волны.

Приведем пример сравнения сигналов электродов (4,6) с сигналами электродов (5,7). Пусть скорость потока 340 м/с, т.е. за 1 мкс поток проходит 0,34 мм. Пусть расстояние а = 3мм, поток проходит за 8,83 мкс. При частоте опроса и регистрации сигналов аналого-цифровым преобразователем, (например, АЦП L-CARD E20-10) 10 МГц. Одно измерение за 0,1 мкс. За 8,83 мкс. получим 88 измерений за время прохождения потока мимо пар электродов.

Датчик теплового потока, содержащий теплоприемник, выполненный в виде полого цилиндра из теплоизоляционного материала, термочувствительный элемент из теплопроводного материала с плоской контактной поверхностью, выполненный в виде тела вращения и соединенный с торцом теплоприемника, отличающийся тем, что в него введены две пары электродов, разнозарядных с соседними, на равном расстоянии друг от друга, образующих квадрат, при этом средняя линия противоположной стороны плоской контактной поверхности термочувствительного элемента, обращенной к потоку, содержит метку по средней линии для ориентации датчика по направлению потока, при этом метка расположена между двумя разнозарядными электродами.



 

Похожие патенты:

Изобретения относятся к теплофизике и могут быть использованы для измерения величины коэффициента теплопередачи различных материалов. Предложен способ определения коэффициента теплопередачи материалов, заключающийся в измерении температуры поверхности исследуемого образца, согласно которому в выемку теплоизолированного корпуса поочередно устанавливают два градуированных образца из того же материала, что и теплоизолированный корпус, причем толщина первого градуированного образца совпадает с толщиной стенок и днища теплоизолированного корпуса, толщина второго градуированного образца в два равна меньше толщины первого градуированного образца; далее воздействуют тепловым потоком на образцы, одновременно электровентилятором проводят охлаждение в климатической камере, определяют разность температур и расход электроэнергии; на основании данных вычисляют коэффициент теплопередачи материала теплоизолированного корпуса, после этого помещают в выемку теплоизолированного корпуса образец из различных исследуемых материалов, воздействуют на образец тепловым потоком, одновременно проводят охлаждение в климатической камере; определяют разность температур и расход электроэнергии, на основании данных вычисляют коэффициент теплопередачи материалов исследуемого образца.

Изобретение относится к области измерительной техники, в частности к измерению количества тепла по сечению излучающей поверхности в сочетании с измерением коэффициента теплопередачи, и может быть использовано для оценки плотности теплового потока или контроля инфракрасного излучения от разогретых объектов, например, при пожаре или различных технологических процессах.

Настоящее изобретение относится к измерениям теплового потока. В частности, изобретение относится к поверхностному адаптеру (10А, 10В, 100) для устройства измерения теплового потока, содержащего такой адаптер (10А, 10В, 100), и способу измерения теплового потока.

Изобретение относится к области измерительной техники и может быть использовано для определения величины, характеризующей тепловое сопротивление любого типа разделительной стены между двумя средами, особенно стены здания, стены транспортного средства, стены печи, стены резервуара. Предложен способ, который нацелен на определение величины, характеризующей тепловое сопротивление разделительной стены между первой средой и второй средой, содержащий этапы, на которых в течение по меньшей мере двух последовательных периодов времени, соответствующих разным мощностям нагрева первой среды, выполняют мероприятия по измерению теплового потока тепла через стену, и температуры в первой среде через близкие временные интервалы, а также определяют температуру во второй среде через близкие временные интервалы.

Изобретение относится к области термометрии и может быть использовано для определения коэффициента K тепловых потерь помещения. Заявленный способ определения коэффициента K тепловых потерь помещения, содержит этапы, на которых в помещении за два последовательных периода времени (Dk)k=1 или 2 применяют мощность обогрева Рk помещения и осуществляют работы по измерению по меньшей мере температуры Tik внутри помещения через короткие промежутки времени, а также определяют температуру Tek наружного воздуха через короткие промежутки времени.

Изобретение относится к области строительной теплотехники и может быть использовано для измерения теплового потока, проходящего через конструкцию. Конструкция имеет толщину (D), по которой в поперечном направлении формируется разность (ΔT) температур.

Изобретение относится к теплотехнике и может быть использовано для учета потребляемого тепла локальным потребителем. .

Изобретение относится к измерительной технике и может быть использовано в теплоэнергетике в системах учета расхода тепловой энергии. .

Изобретение относится к экспериментальной теплофизике и может быть использовано для определения мгновенного осредненного по поверхности значения коэффициента теплоотдачи к поверхности рабочей камеры машины объемного действия. .

Изобретение относится к теплотехническим измерениям и позволяет определить расход тепловой энергии, получаемой от теплоисточников по состоянию, расходу и разности температур, и может быть использовано в системе пожаротушения трубных печей в системе первичной подготовки нефти. В предлагаемом способе объем потребляемой тепловой энергии от парового котла определяют как разность полученной потребителем тепловой энергии по паропроводу на основе определения расхода, давления и температуры пара из парового котла и возвращаемой потребителю по водопроводу тепловой энергии жидкости по расходу и температуре.
Наверх